145 resultados para Structural Optimization
Resumo:
BACKGROUND: Today, recognition and classification of sequence motifs and protein folds is a mature field, thanks to the availability of numerous comprehensive and easy to use software packages and web-based services. Recognition of structural motifs, by comparison, is less well developed and much less frequently used, possibly due to a lack of easily accessible and easy to use software. RESULTS: In this paper, we describe an extension of DeepView/Swiss-PdbViewer through which structural motifs may be defined and searched for in large protein structure databases, and we show that common structural motifs involved in stabilizing protein folds are present in evolutionarily and structurally unrelated proteins, also in deeply buried locations which are not obviously related to protein function. CONCLUSIONS: The possibility to define custom motifs and search for their occurrence in other proteins permits the identification of recurrent arrangements of residues that could have structural implications. The possibility to do so without having to maintain a complex software/hardware installation on site brings this technology to experts and non-experts alike.
Resumo:
The purpose of this article was to review the strategies to control patient dose in adult and pediatric computed tomography (CT), taking into account the change of technology from single-detector row CT to multi-detector row CT. First the relationships between computed tomography dose index, dose length product, and effective dose in adult and pediatric CT are revised, along with the diagnostic reference level concept. Then the effect of image noise as a function of volume computed tomography dose index, reconstructed slice thickness, and the size of the patient are described. Finally, the potential of tube current modulation CT is discussed.
Resumo:
Ski resorts are deploying more and more systems of artificial snow. These tools are necessary to ensure an important economic activity for the high alpine valleys. However, artificial snow raises important environmental issues that can be reduced by an optimization of its production. This paper presents a software prototype based on artificial intelligence to help ski resorts better manage their snowpack. It combines on one hand a General Neural Network for the analysis of the snow cover and the spatial prediction, with on the other hand a multiagent simulation of skiers for the analysis of the spatial impact of ski practice. The prototype has been tested on the ski resort of Verbier (Switzerland).
Resumo:
Rockfall is an extremely rapid process involving long travel distances. Due to these features, when an event occurs, the ability to take evasive action is practically zero and, thus, the risk of injury or loss of life is high. Damage to buildings and infrastructure is quite likely. In many cases, therefore, suitable protection measures are necessary. This contribution provides an overview of previous and current research on the main topics related to rockfall. It covers the onset of rockfall and runout modelling approaches, as well as hazard zoning and protection measures. It is the aim of this article to provide an in-depth knowledge base for researchers and practitioners involved in projects dealing with the rockfall protection of infrastructures, who may work in the fields of civil or environmental engineering, risk and safety, the earth and natural sciences.
Resumo:
The present study discusses the effect of iron doping in TiO2 thin films deposited by rf sputtering. Iron doping induces a structural transformation from anatase to rutile and electrical measurements indicate that iron acts as an acceptor impurity. Thermoelectric power measurement shows a transition between n-type and p-type electrical conduction for an iron concentration around 0.13 at.%. The highest p-type conductivity at room temperature achieved by iron doping was 10(-6) S m(-1).
Resumo:
One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.