171 resultados para Shape prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods used to analyze one type of nonstationary stochastic processes?the periodically correlated process?are considered. Two methods of one-step-forward prediction of periodically correlated time series are examined. One-step-forward predictions made in accordance with an autoregression model and a model of an artificial neural network with one latent neuron layer and with an adaptation mechanism of network parameters in a moving time window were compared in terms of efficiency. The comparison showed that, in the case of prediction for one time step for time series of mean monthly water discharge, the simpler autoregression model is more efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A published formula containing minimal aortic cross-sectional area and the flow deceleration pattern in the descending aorta obtained by cardiovascular magnetic resonance predicts significant coarctation of the aorta (CoA). However, the existing formula is complicated to use in clinical practice and has not been externally validated. Consequently, its clinical utility has been limited. The aim of this study was to derive a simple and clinically practical algorithm to predict severe CoA from data obtained by cardiovascular magnetic resonance. Seventy-nine consecutive patients who underwent cardiovascular magnetic resonance and cardiac catheterization for the evaluation of native or recurrent CoA at Children's Hospital Boston (n = 30) and the University of California, San Francisco (n = 49), were retrospectively reviewed. The published formula derived from data obtained at Children's Hospital Boston was first validated from data obtained at the University of California, San Francisco. Next, pooled data from the 2 institutions were analyzed, and a refined model was created using logistic regression methods. Finally, recursive partitioning was used to develop a clinically practical prediction tree to predict transcatheter systolic pressure gradient ≥ 20 mm Hg. Severe CoA was present in 48 patients (61%). Indexed minimal aortic cross-sectional area and heart rate-corrected flow deceleration time in the descending aorta were independent predictors of CoA gradient ≥ 20 mm Hg (p <0.01 for both). A prediction tree combining these variables reached a sensitivity and specificity of 90% and 76%, respectively. In conclusion, the presented prediction tree on the basis of cutoff values is easy to use and may help guide the management of patients investigated for CoA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Positron emission tomography with (18)F-fluorodeoxyglucose (FDG-PET) was used to evaluate treatment response in patients with gastrointestinal stromal tumors (GIST) after administration of sunitinib, a multitargeted tyrosine kinase inhibitor, after imatinib failure. PATIENTS AND METHODS: Tumor metabolism was assessed with FDG-PET before and after the first 4 weeks of sunitinib therapy in 23 patients who received one to 12 cycles of sunitinib therapy (4 weeks of 50 mg/d, 2 weeks off). Treatment response was expressed as the percent change in maximal standardized uptake values (SUV). The primary end point of time to tumor progression was compared with early PET results on the basis of traditional Response Evaluation Criteria in Solid Tumors (RECIST) criteria. RESULTS: Progression-free survival (PFS) was correlated with early FDG-PET metabolic response (P < .0001). Using -25% and +25% thresholds for SUV variations from baseline, early FDG-PET response was stratified in metabolic partial response, metabolically stable disease, or metabolically progressive disease; median PFS rates were 29, 16, and 4 weeks, respectively. Similarly, when a single FDG-PET positive/negative was considered after 4 weeks of sunitinib, the median PFS was 29 weeks for SUVs less than 8 g/mL versus 4 weeks for SUVs of 8 g/mL or greater (P < .0001). None of the patients with metabolically progressive disease subsequently responded according to RECIST criteria. Multivariate analysis showed shorter PFS in patients who had higher residual SUVs (P < .0001), primary resistance to imatinib (P = .024), or nongastric GIST (P = .002), regardless of the mutational status of the KIT and PDGFRA genes. CONCLUSION: Week 4 FDG-PET is useful for early assessment of treatment response and for the prediction of clinical outcome. Thus, it offers opportunities to individualize and optimize patient therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene transfer in eukaryotic cells and organisms suffers from epigenetic effects that result in low or unstable transgene expression and high clonal variability. Use of epigenetic regulators such as matrix attachment regions (MARs) is a promising approach to alleviate such unwanted effects. Dissection of a known MAR allowed the identification of sequence motifs that mediate elevated transgene expression. Bioinformatics analysis implied that these motifs adopt a curved DNA structure that positions nucleosomes and binds specific transcription factors. From these observations, we computed putative MARs from the human genome. Cloning of several predicted MARs indicated that they are much more potent than the previously known element, boosting the expression of recombinant proteins from cultured cells as well as mediating high and sustained expression in mice. Thus we computationally identified potent epigenetic regulators, opening new strategies toward high and stable transgene expression for research, therapeutic production or gene-based therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Obesity is strongly associated with major depressive disorder (MDD) and various other diseases. Genome-wide association studies have identified multiple risk loci robustly associated with body mass index (BMI). In this study, we aimed to investigate whether a genetic risk score (GRS) combining multiple BMI risk loci might have utility in prediction of obesity in patients with MDD. METHODS: Linear and logistic regression models were conducted to predict BMI and obesity, respectively, in three independent large case-control studies of major depression (Radiant, GSK-Munich, PsyCoLaus). The analyses were first performed in the whole sample and then separately in depressed cases and controls. An unweighted GRS was calculated by summation of the number of risk alleles. A weighted GRS was calculated as the sum of risk alleles at each locus multiplied by their effect sizes. Receiver operating characteristic (ROC) analysis was used to compare the discriminatory ability of predictors of obesity. RESULTS: In the discovery phase, a total of 2,521 participants (1,895 depressed patients and 626 controls) were included from the Radiant study. Both unweighted and weighted GRS were highly associated with BMI (P <0.001) but explained only a modest amount of variance. Adding 'traditional' risk factors to GRS significantly improved the predictive ability with the area under the curve (AUC) in the ROC analysis, increasing from 0.58 to 0.66 (95% CI, 0.62-0.68; χ(2) = 27.68; P <0.0001). Although there was no formal evidence of interaction between depression status and GRS, there was further improvement in AUC in the ROC analysis when depression status was added to the model (AUC = 0.71; 95% CI, 0.68-0.73; χ(2) = 28.64; P <0.0001). We further found that the GRS accounted for more variance of BMI in depressed patients than in healthy controls. Again, GRS discriminated obesity better in depressed patients compared to healthy controls. We later replicated these analyses in two independent samples (GSK-Munich and PsyCoLaus) and found similar results. CONCLUSIONS: A GRS proved to be a highly significant predictor of obesity in people with MDD but accounted for only modest amount of variance. Nevertheless, as more risk loci are identified, combining a GRS approach with information on non-genetic risk factors could become a useful strategy in identifying MDD patients at higher risk of developing obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonographic detection of subclinical atherosclerosis improves cardiovascular risk stratification, but uncertainty persists about the most discriminative method to apply. In this study, we found that the "atherosclerosis burden score (ABS)", a novel straightforward ultrasonographic score that sums the number of carotid and femoral arterial bifurcations with plaques, significantly outperformed common carotid intima-media thickness, carotid mean/maximal thickness, and carotid/femoral plaque scores for the detection of coronary artery disease (CAD) (receiver operating characteristic (ROC) curve area under the curve (AUC) = 0.79; P = 0.027 to <0.001 with the other five US endpoints) in 203 patients undergoing coronary angiography. ABS was also more correlated with CAD extension (R = 0.55; P < 0.001). Furthermore, in a second group of 1128 patients without cardiovascular disease, ABS was weakly correlated with the European Society of Cardiology chart risk categories (R (2) = 0.21), indicating that ABS provided information beyond usual cardiovascular risk factor-based risk stratification. Pending prospective studies on hard cardiovascular endpoints, ABS appears as a promising tool in primary prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this commentary, we argue that the term 'prediction' is overly used when in fact, referring to foundational writings of de Finetti, the correspondent term should be inference. In particular, we intend (i) to summarize and clarify relevant subject matter on prediction from established statistical theory, and (ii) point out the logic of this understanding with respect practical uses of the term prediction. Written from an interdisciplinary perspective, associating statistics and forensic science as an example, this discussion also connects to related fields such as medical diagnosis and other areas of application where reasoning based on scientific results is practiced in societal relevant contexts. This includes forensic psychology that uses prediction as part of its vocabulary when dealing with matters that arise in the course of legal proceedings.