179 resultados para Set-Valued Functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a compressive sensing algorithm that exploits geometric properties of images to recover images of high quality from few measurements. The image reconstruction is done by iterating the two following steps: 1) estimation of normal vectors of the image level curves, and 2) reconstruction of an image fitting the normal vectors, the compressed sensing measurements, and the sparsity constraint. The proposed technique can naturally extend to nonlocal operators and graphs to exploit the repetitive nature of textured images to recover fine detail structures. In both cases, the problem is reduced to a series of convex minimization problems that can be efficiently solved with a combination of variable splitting and augmented Lagrangian methods, leading to fast and easy-to-code algorithms. Extended experiments show a clear improvement over related state-of-the-art algorithms in the quality of the reconstructed images and the robustness of the proposed method to noise, different kind of images, and reduced measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En s'inspirant de la littérature récente qui a dépeint l'ambivalence comme étant adaptative et en lien avec des comportements stratégiques, cette thèse examine le versant utile des attitudes ambivalentes. Elle met tout d'abord en évidence que son expression peut-être sciemment contrôlée et mise en avant pour des raisons d'auto-présentation. De plus, elle démontre que les individus peuvent présenter une attitude ambivalente afin de gagner l'approbation sociale sur un objet d'attitude controversé alors que l'inverse a été observé sur des objets consensuels (Première ligne de recherche). Cette thèse a également révélé que l'expression d'attitudes ambivalentes pouvait amener à être valorisé socialement. En effet, contrairement à des attitudes plus tranchées (pro-normatives ou contre-normatives), les attitudes ambivalentes ont été évaluées de façon plus importante sur la dimension de l'utilité sociale (une dimension qui indique la compétence d'autrui ou encore la propension à évoluer dans la hiérarchie sociale). La valorisation de l'ambivalence n'est apparue que sur la dimension de l'utilité sociale et non sur la dimension de la désirabilité sociale (une dimension qui indique la sympathie d'autrui ainsi que la propension à être apprécié socialement). De plus, ce résultat a été observé sur des thèmes controversés et non sur des thèmes consensuels (Seconde ligne de recherche). Dans l'ensemble cette thèse soutient une approche de l'ambivalence comme donnant lieu à des bénéfices. Elle peut également ouvrir la voie à l'étude de l'ambivalence en lien avec la pensée critique. - Drawing on the recent literature that portrayed ambivalence as being adaptive and linked with strategic behaviors, this thesis examines the useful side of ambivalent attitudes. It first revealed that the expression of ambivalent attitudes could be controlled and purposely displayed for self-presentational concerns. Furthermore, it demonstrated that people could put ambivalence forward to gain social approval when expressing it on controversial social issues, whereas the opposite was true on consensual social issues (First line of research). The thesis also revealed that the expression of ambivalent attitudes could lead to be socially valued. Indeed, contrary to clear-cut attitudes (either pro-normative or counter-normative attitudes), ambivalent attitudes have been evaluated the highest on the social utility dimension (a dimension indicating people's competence as well as the extent to which they are likely to climb in social hierarchy). The valorization of ambivalent attitudes only appeared on social utility and not on social desirability (a dimension indicating people's niceness as well as the extent to which they are likely to be socially appreciated). This effect was true on controversial social issues but not on consensual ones (Second line of research). Overall, this thesis provides support for an approach that conceives attitudinal ambivalence as leading to benefits. It also may open avenues for the study of ambivalence in relation with critical thinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RAPPORT DE SYNTHÈSE : Les profils des granules cytotoxiques des cellules T CD8 mémoires sont corrélés à la fonction, à leur état de différentiation et à l'exposition à l'antigène. Les lymphocytes T-CD8 cytotoxiques exercent leur fonction antivirale et antitumorale surtout par la sécrétion des granules cytotoxiques. En général, ce sont l'activité de dégranulation et les granules cytotoxiques (contenant perforine et différentes granzymes) qui définissent les lymphocytes T-CD8 cytotoxiques. Dans cette étude, nous avons investigué l'expression de granzyme K par cytométrie en flux, en comparaison avec l'expression de granzyme A, granzyme B et de perforine. L'expression des granules cytotoxiques a été déterminée dans lymphocytes T-CD8 qui étaient spécifiques pour des différents virus, en particulier spécifique pour le virus d'influenza (flu), le virus Ebstein Barr (EBV), le virus de cytomégalie (CMV) et le virus de l'immunodéficience humaine (HIV). Nous avons observé une dichotomie entre l'expression du granzyme K et de la perforine dans les lymphocytes T-CD8 qui étaient spécifiques aux virus mentionnés. Les profils des lymphocytes T-CD8 spécifiques à flu étaient positifs soit pour granzyme A et granzyme K soit pour le granzyme K seul, mais dans l'ensemble négatifs pour perforine et granzyme B. Les cellules spécifiques à CMV étaient dans la plupart positives pour perforine, granzyme B et A, mais négatives pour le granzyme K. Les cellules spécifiques à EBV et HIV étaient dans la majorité positives pour granzyme A, B et K, et dans la moitié des cas négatives pour la perforine. Nous avons également analysé, selon les marqueurs de mémoire de CD45 et CD127, les profils de différentiation cellulaire: Les cellules avec les granules cytotoxiques contenant exclusivement le granzyme K, étaient associées à un état de différentiation précoce. Au contraire, les protéines cytolytiques perforine, granzyme A et B, correspondent à une différentiation avancée. En outre, les protéines perforine et granzyme B, mais pas les granzymes A et K, sont corrélées à une activité cytotoxique. Finalement, des changements dans l'exposition d'antigène in vitro et in vivo suivant une infection primaire d' HIV ou une vaccination modulent le profil de granules cytotoxiques. Ces résultats nous permettent d'étendre la compréhension de la relation entre les différents profils de granules cytotoxiques des lymphocytes T-CD8 et leur fonction, leur état de différentiation et l'exposition à l'antigène.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial hearing refers to a set of abilities enabling us to determine the location of sound sources, redirect our attention toward relevant acoustic events, and recognize separate sound sources in noisy environments. Determining the location of sound sources plays a key role in the way in which humans perceive and interact with their environment. Deficits in sound localization abilities are observed after lesions to the neural tissues supporting these functions and can result in serious handicaps in everyday life. These deficits can, however, be remediated (at least to a certain degree) by the surprising capacity of reorganization that the human brain possesses following damage and/or learning, namely, the brain plasticity. In this thesis, our aim was to investigate the functional organization of auditory spatial functions and the learning-induced plasticity of these functions. Overall, we describe the results of three studies. The first study entitled "The role of the right parietal cortex in sound localization: A chronometric single pulse transcranial magnetic stimulation study" (At et al., 2011), study A, investigated the role of the right parietal cortex in spatial functions and its chronometry (i.e. the critical time window of its contribution to sound localizations). We concentrated on the behavioral changes produced by the temporarily inactivation of the parietal cortex with transcranial magnetic stimulation (TMS). We found that the integrity of the right parietal cortex is crucial for localizing sounds in the space and determined a critical time window of its involvement, suggesting a right parietal dominance for auditory spatial discrimination in both hemispaces. In "Distributed coding of the auditory space in man: evidence from training-induced plasticity" (At et al., 2013a), study B, we investigated the neurophysiological correlates and changes of the different sub-parties of the right auditory hemispace induced by a multi-day auditory spatial training in healthy subjects with electroencephalography (EEG). We report a distributed coding for sound locations over numerous auditory regions, particular auditory areas code specifically for precise parts of the auditory space, and this specificity for a distinct region is enhanced with training. In the third study "Training-induced changes in auditory spatial mismatch negativity" (At et al., 2013b), study C, we investigated the pre-attentive neurophysiological changes induced with a training over 4 days in healthy subjects with a passive mismatch negativity (MMN) paradigm. We showed that training changed the mechanisms for the relative representation of sound positions and not the specific lateralization themselves and that it changed the coding in right parahippocampal regions. - L'audition spatiale désigne notre capacité à localiser des sources sonores dans l'espace, de diriger notre attention vers les événements acoustiques pertinents et de reconnaître des sources sonores appartenant à des objets distincts dans un environnement bruyant. La localisation des sources sonores joue un rôle important dans la façon dont les humains perçoivent et interagissent avec leur environnement. Des déficits dans la localisation de sons sont souvent observés quand les réseaux neuronaux impliqués dans cette fonction sont endommagés. Ces déficits peuvent handicaper sévèrement les patients dans leur vie de tous les jours. Cependant, ces déficits peuvent (au moins à un certain degré) être réhabilités grâce à la plasticité cérébrale, la capacité du cerveau humain à se réorganiser après des lésions ou un apprentissage. L'objectif de cette thèse était d'étudier l'organisation fonctionnelle de l'audition spatiale et la plasticité induite par l'apprentissage de ces fonctions. Dans la première étude intitulé « The role of the right parietal cortex in sound localization : A chronometric single pulse study » (At et al., 2011), étude A, nous avons examiné le rôle du cortex pariétal droit dans l'audition spatiale et sa chronométrie, c'est-à- dire le moment critique de son intervention dans la localisation de sons. Nous nous sommes concentrés sur les changements comportementaux induits par l'inactivation temporaire du cortex pariétal droit par le biais de la Stimulation Transcrânienne Magnétique (TMS). Nous avons démontré que l'intégrité du cortex pariétal droit est cruciale pour localiser des sons dans l'espace. Nous avons aussi défini le moment critique de l'intervention de cette structure. Dans « Distributed coding of the auditory space : evidence from training-induced plasticity » (At et al., 2013a), étude B, nous avons examiné la plasticité cérébrale induite par un entraînement des capacités de discrimination auditive spatiale de plusieurs jours. Nous avons montré que le codage des positions spatiales est distribué dans de nombreuses régions auditives, que des aires auditives spécifiques codent pour des parties données de l'espace et que cette spécificité pour des régions distinctes est augmentée par l'entraînement. Dans « Training-induced changes in auditory spatial mismatch negativity » (At et al., 2013b), étude C, nous avons examiné les changements neurophysiologiques pré- attentionnels induits par un entraînement de quatre jours. Nous avons montré que l'entraînement modifie la représentation des positions spatiales entraînées et non-entrainées, et que le codage de ces positions est modifié dans des régions parahippocampales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) are fatty acid and eicosanoid inducible nuclear receptors, which occur in three different isotypes. Upon activator binding, they modulate the expression of various target genes implicated in several important physiological pathways. During the past few years, the identification of both PPAR ligands, natural and synthetic, and PPAR targets and their associated functions has been one of the most important achievements in the field. It underscores the potential therapeutic application of PPAR-specific compounds on the one side, and the crucial biological roles of endogenous PPAR ligands on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After antigenic challenge, naive T lymphocytes enter a program of proliferation and differentiation during the course of which they acquire effector functions and may ultimately become memory cells. In humans, the pathways of effector and memory T-cell differentiation remain poorly defined. Here we describe the properties of 2 CD8+ T-lymphocyte subsets, RA+CCR7-27+28+ and RA+CCR7-27+28-, in human peripheral blood. These cells display phenotypic and functional features that are intermediate between naive and effector T cells. Like naive T lymphocytes, both subsets show relatively long telomeres. However, unlike the naive population, these T cells exhibit reduced levels of T-cell receptor excision circles (TRECs), indicating they have undergone additional rounds of in vivo cell division. Furthermore, we show that they also share effector-type properties. At equivalent in vivo replicative history, the 2 subsets express high levels of Fas/CD95 and CD11a, as well as increasing levels of effector mediators such as granzyme B, perforin, interferon gamma, and tumor necrosis factor alpha. Both display partial ex vivo cytolytic activity and can be found among cytomegalovirus-specific cytolytic T cells. Taken together, our data point to the presence of T cells with intermediate effector-like functions and suggest that these subsets consist of T lymphocytes that are evolving toward a more differentiated effector or effector-memory stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Ovarian tumors (OT) typing is a competency expected from pathologists, with significant clinical implications. OT however come in numerous different types, some rather rare, with the consequence of few opportunities for practice in some departments. Aim: Our aim was to design a tool for pathologists to train in less common OT typing. Method and Results: Representative slides of 20 less common OT were scanned (Nano Zoomer Digital Hamamatsu®) and the diagnostic algorithm proposed by Young and Scully applied to each case (Young RH and Scully RE, Seminars in Diagnostic Pathology 2001, 18: 161-235) to include: recognition of morphological pattern(s); shortlisting of differential diagnosis; proposition of relevant immunohistochemical markers. The next steps of this project will be: evaluation of the tool in several post-graduate training centers in Europe and Québec; improvement of its design based on evaluation results; diffusion to a larger public. Discussion: In clinical medicine, solving many cases is recognized as of utmost importance for a novice to become an expert. This project relies on the virtual slides technology to provide pathologists with a learning tool aimed at increasing their skills in OT typing. After due evaluation, this model might be extended to other uncommon tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new indicator taxa approach to the prediction of climate change effects on biodiversity at the national level in Switzerland. As indicators, we select a set of the most widely distributed species that account for 95% of geographical variation in sampled species richness of birds, butterflies, and vascular plants. Species data come from a national program designed to monitor spatial and temporal trends in species richness. We examine some opportunities and limitations in using these data. We develop ecological niche models for the species as functions of both climate and land cover variables. We project these models to the future using climate predictions that correspond to two IPCC 3rd assessment scenarios for the development of 'greenhouse' gas emissions. We find that models that are calibrated with Swiss national monitoring data perform well in 10-fold cross-validation, but can fail to capture the hot-dry end of environmental gradients that constrain some species distributions. Models for indicator species in all three higher taxa predict that climate change will result in turnover in species composition even where there is little net change in predicted species richness. Indicator species from high elevations lose most areas of suitable climate even under the relatively mild B2 scenario. We project some areas to increase in the number of species for which climate conditions are suitable early in the current century, but these areas become less suitable for a majority of species by the end of the century. Selection of indicator species based on rank prevalence results in a set of models that predict observed species richness better than a similar set of species selected based on high rank of model AUC values. An indicator species approach based on selected species that are relatively common may facilitate the use of national monitoring data for predicting climate change effects on the distribution of biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three peroxisome proliferator-activated receptors (PPAR alpha, PPAR beta, and PPAR gamma) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. They are regarded as being sensors of physiological levels of fatty acids and fatty acid derivatives. In the adult mouse skin, they are found in hair follicle keratinocytes but not in interfollicular epidermis keratinocytes. Skin injury stimulates the expression of PPAR alpha and PPAR beta at the site of the wound. Here, we review the spatiotemporal program that triggers PPAR beta expression immediately after an injury, and then gradually represses it during epithelial repair. The opposing effects of the tumor necrosis factor-alpha and transforming growth factor-beta-1 signalling pathways on the activity of the PPAR beta promoter are the key elements of this regulation. We then compare the involvement of PPAR beta in the skin in response to an injury and during hair morphogenesis, and underscore the similarity of its action on cell survival in both situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The kidney plays an essential role in maintaining sodium and water balance, thereby controlling the volume and osmolarity of the extracellular body fluids, the blood volume and the blood pressure. The final adjustment of sodium and water reabsorption in the kidney takes place in cells of the distal part of the nephron in which a set of apical and basolateral transporters participate in vectorial sodium and water transport from the tubular lumen to the interstitium and, finally, to the general circulation. According to a current model, the activity and/or cell-surface expression of these transporters is/are under the control of a gene network composed of the hormonally regulated, as well as constitutively expressed, genes. It is proposed that this gene network may include new candidate genes for salt- and water-losing syndromes and for salt-sensitive hypertension. A new generation of functional genomics techniques have recently been applied to the characterization of this gene network. The purpose of this review is to summarize these studies and to discuss the potential of the different techniques for characterization of the renal transcriptome. RECENT FINDINGS: Recently, DNA microarrays and serial analysis of gene expression have been applied to characterize the kidney transcriptome in different in-vivo and in-vitro models. In these studies, a set of new interesting genes potentially involved in the regulation of sodium and water reabsorption by the kidney have been identified and are currently under detailed investigation. SUMMARY: Characterization of the kidney transcriptome is greatly expanding our knowledge of the gene networks involved in multiple kidney functions, including the maintenance of sodium and water homeostasis.