141 resultados para Respiratory inductive plethysmography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial programmed cell death and quorum sensing are direct examples of prokaryote group behaviors, wherein cells coordinate their actions to function cooperatively like one organism for the benefit of the whole culture. We demonstrate here that 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum-sensing-regulated low-molecular-weight excreted molecule, triggers autolysis by self-perturbing the electron transfer reactions of the cytochrome bc1 complex. HQNO induces specific self-poisoning by disrupting the flow of electrons through the respiratory chain at the cytochrome bc1 complex, causing a leak of reducing equivalents to O2 whereby electrons that would normally be passed to cytochrome c are donated directly to O2. The subsequent mass production of reactive oxygen species (ROS) reduces membrane potential and disrupts membrane integrity, causing bacterial cell autolysis and DNA release. DNA subsequently promotes biofilm formation and increases antibiotic tolerance to beta-lactams, suggesting that HQNO-dependent cell autolysis is advantageous to the bacterial populations. These data identify both a new programmed cell death system and a novel role for HQNO as a critical inducer of biofilm formation and antibiotic tolerance. This newly identified pathway suggests intriguing mechanistic similarities with the initial mitochondrial-mediated steps of eukaryotic apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108 W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Compensation for respiratory motion is needed while administering radiotherapy (RT) to tumors that are moving with respiration to reduce the amount of irradiated normal tissues and potentially decrease radiation-induced collateral damages. The purpose of this study was to test a new ventilation system designed to induce apnea-like suppression of respiratory motion and allow long enough breath hold durations to deliver complex RT. MATERIAL AND METHODS: The High Frequency Percussive Ventilation system was initially tested in a series of 10 volunteers and found to be well tolerated, allowing a median breath hold duration of 11.6min (range 3.9-16.5min). An evaluation of this system was subsequently performed in 4 patients eligible for adjuvant breast 3D conformal RT, for lung stereotactic body RT (SBRT), lung volumetric modulated arc therapy (VMAT), and VMAT for palliative pleural metastases. RESULTS: When compared to free breathing (FB) and maximal inspiration (MI) gating, this Percussion Assisted RT (PART) offered favorable dose distribution profiles in 3 out of the 4 patients tested. PART was applied in these 3 patients with good tolerance, without breaks during the "beam on time period" throughout the overall courses of RT. The mean duration of the apnea-like breath hold that was necessary for delivering all the RT fractions was 7.61min (SD=2.3). CONCLUSIONS: This first clinical implementation of PART was found to be feasible, tolerable and offers new opportunities in the field of RT for suppressing respiratory motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hemidiaphragmatic paresis after ultrasound-guided interscalene brachial plexus block is reported to occur in up to 100% of patients. We tested the hypothesis that an injection lateral to the brachial plexus sheath reduces the incidence of hemidiaphragmatic paresis compared with a conventional intrafascial injection, while providing similar analgesia. METHODS: Forty ASA I-III patients undergoing elective shoulder and clavicle surgery under general anaesthesia were randomized to receive an ultrasound-guided interscalene brachial plexus block for analgesia, using 20 ml bupivacaine 0.5% with epinephrine 1:200 000 injected either between C5 and C6 within the interscalene groove (conventional intrafascial injection), or 4 mm lateral to the brachial plexus sheath (extrafascial injection). The primary outcome was incidence of hemidiaphragmatic paresis (diaphragmatic excursion reduction >75%), measured by M-mode ultrasonography, before and 30 min after the procedure. Secondary outcomes were forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow. Additional outcomes included time to first opioid request and pain scores at 24 h postoperatively (numeric rating scale, 0-10). RESULTS: The incidences of hemidiaphragmatic paresis were 90% (95% CI: 68-99%) and 21% (95% CI: 6-46%) in the conventional and extrafascial injection groups, respectively (P<0.0001). Other respiratory outcomes were significantly better preserved in the extrafascial injection group. The mean time to first opioid request was similar between groups (conventional: 802 min [95% CI: 620-984 min]; extrafascial: 973 min [95% CI: 791-1155 min]; P=0.19) as were pain scores at 24 h postoperatively (conventional: 1.6 [95% CI: 0.9-2.2]; extrafascial: 1.6 [95% CI: 0.8-2.4]; P=0.97). CONCLUSIONS: Ultrasound-guided interscalene brachial plexus block with an extrafascial injection reduces the incidence of hemidiaphragmatic paresis and impact on respiratory function while providing similar analgesia, when compared with a conventional injection. CLINICAL TRIAL REGISTRATION: NCT02074397.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apart from its role as a flow generator for ventilation the diaphragm has a circulatory role. The cyclical abdominal pressure variations from its contractions cause swings in venous return from the splanchnic venous circulation. During exercise the action of the abdominal muscles may enhance this circulatory function of the diaphragm. Eleven healthy subjects (25 ± 7 year, 70 ± 11 kg, 1.78 ± 0.1 m, 3 F) performed plantar flexion exercise at ~4 METs. Changes in body volume (ΔVb) and trunk volume (ΔVtr) were measured simultaneously by double body plethysmography. Volume of blood shifts between trunk and extremities (Vbs) was determined non-invasively as ΔVtr-ΔVb. Three types of breathing were studied: spontaneous (SE), rib cage (RCE, voluntary emphasized inspiratory rib cage breathing), and abdominal (ABE, voluntary active abdominal expiration breathing). During SE and RCE blood was displaced from the extremities into the trunk (on average 0.16 ± 0.33 L and 0.48 ± 0.55 L, p < 0.05 SE vs. RCE), while during ABE it was displaced from the trunk to the extremities (0.22 ± 0.20 L p < 0.001, p < 0.05 RCE and SE vs. ABE respectively). At baseline, Vbs swings (maximum to minimum amplitude) were bimodal and averaged 0.13 ± 0.08 L. During exercise, Vbs swings consistently increased (0.42 ± 0.34 L, 0.40 ± 0.26 L, 0.46 ± 0.21 L, for SE, RCE and ABE respectively, all p < 0.01 vs. baseline). It follows that during leg exercise significant bi-directional blood shifting occurs between the trunk and the extremities. The dynamics and partitioning of these blood shifts strongly depend on the relative predominance of the action of the diaphragm, the rib cage and the abdominal muscles. Depending on the partitioning between respiratory muscles for the act of breathing, the distribution of blood between trunk and extremities can vary by up to 1 L. We conclude that during exercise the abdominal muscles and the diaphragm might play a role of an "auxiliary heart."