159 resultados para Rational didactic reconstruction
Resumo:
Differential X-ray phase-contrast tomography (DPCT) refers to a class of promising methods for reconstructing the X-ray refractive index distribution of materials that present weak X-ray absorption contrast. The tomographic projection data in DPCT, from which an estimate of the refractive index distribution is reconstructed, correspond to one-dimensional (1D) derivatives of the two-dimensional (2D) Radon transform of the refractive index distribution. There is an important need for the development of iterative image reconstruction methods for DPCT that can yield useful images from few-view projection data, thereby mitigating the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods. In this work, we analyze the numerical and statistical properties of two classes of discrete imaging models that form the basis for iterative image reconstruction in DPCT. We also investigate the use of one of the models with a modern image reconstruction algorithm for performing few-view image reconstruction of a tissue specimen.
Resumo:
OBJECTIVE: An operative technique is described as a salvage treatment for severe subglottic and supraglottic laryngeal stenosis. In addition to expansion of the laryngeal framework with an anterior cartilage graft, as used in a classical laryngotracheal reconstruction, the scar tissue obliterating the airway lumen is excised and a mucosal graft is placed to reconstruct the inner lining of the airway. The graft is harvested from buccal mucosa. METHODS: The operative technique is outlined. Three cases, 2 paediatric and one adult, with complete or near complete laryngeal stenosis are presented where this operative technique was employed. In all patients several surgeries had been performed previously which were unsuccessful. RESULTS: In all 3 patients a patent airway was achieved with decannulation of the tracheostomy in the 2 paediatric patients. CONCLUSIONS: In patients with severe subglottic or supraglottic airway stenosis where other surgeries have failed, excision of endoluminal scar tissue and placement of a buccal mucosal graft, in addition to conventional laryngotracheal reconstruction, is a promising technique. In revision cases of subglottic stenosis cricotracheal resection might not be an option because of scarring from previous surgeries. This operation is an alternative, which allows an increase in the airway lumen by excising the scar tissue then re-lining the exposed internal lumen. The buccal mucosa reduces granulation formation and re-stenosis.
Resumo:
PURPOSE: To combine weighted iterative reconstruction with self-navigated free-breathing coronary magnetic resonance angiography for retrospective reduction of respiratory motion artifacts. METHODS: One-dimensional self-navigation was improved for robust respiratory motion detection and the consistency of the acquired data was estimated on the detected motion. Based on the data consistency, the data fidelity term of iterative reconstruction was weighted to reduce the effects of respiratory motion. In vivo experiments were performed in 14 healthy volunteers and the resulting image quality of the proposed method was compared to a navigator-gated reference in terms of acquisition time, vessel length, and sharpness. RESULT: Although the sampling pattern of the proposed method contained 60% more samples with respect to the reference, the scan efficiency was improved from 39.5 ± 10.1% to 55.1 ± 9.1%. The improved self-navigation showed a high correlation to the standard navigator signal and the described weighting efficiently reduced respiratory motion artifacts. Overall, the average image quality of the proposed method was comparable to the navigator-gated reference. CONCLUSION: Self-navigated coronary magnetic resonance angiography was successfully combined with weighted iterative reconstruction to reduce the total acquisition time and efficiently suppress respiratory motion artifacts. The simplicity of the experimental setup and the promising image quality are encouraging toward future clinical evaluation. Magn Reson Med 73:1885-1895, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.
Resumo:
This study presents an innovative methodology for forensic science image analysis for event reconstruction. The methodology is based on experiences from real cases. It provides real added value to technical guidelines such as standard operating procedures (SOPs) and enriches the community of practices at stake in this field. This bottom-up solution outlines the many facets of analysis and the complexity of the decision-making process. Additionally, the methodology provides a backbone for articulating more detailed and technical procedures and SOPs. It emerged from a grounded theory approach; data from individual and collective interviews with eight Swiss and nine European forensic image analysis experts were collected and interpreted in a continuous, circular and reflexive manner. Throughout the process of conducting interviews and panel discussions, similarities and discrepancies were discussed in detail to provide a comprehensive picture of practices and points of view and to ultimately formalise shared know-how. Our contribution sheds light on the complexity of the choices, actions and interactions along the path of data collection and analysis, enhancing both the researchers' and participants' reflexivity.
Resumo:
By merging computational systems modeling and experimental approaches, we have uncovered treatments reprogramming pro-angiogenic monocytes present in breast tumor into immunologically potent cells capable of mediating an anti-tumor immune response. The unraveled pathways and ligands which underlie monocyte pro-angiogenic activity have a strong predictive value for breast cancer patient relapse - free survival.
Resumo:
Le nombre d'examens tomodensitométriques (Computed Tomography, CT) effectués chaque année étant en constante augmentation, différentes techniques d'optimisation, dont les algorithmes de reconstruction itérative permettant de réduire le bruit tout en maintenant la résolution spatiale, ont étés développées afin de réduire les doses délivrées. Le but de cette étude était d'évaluer l'impact des algorithmes de reconstruction itérative sur la qualité image à des doses effectives inférieures à 0.3 mSv, comparables à celle d'une radiographie thoracique. Vingt CT thoraciques effectués à cette dose effective ont été reconstruits en variant trois paramètres: l'algorithme de reconstruction, rétroprojection filtrée versus reconstruction itérative iDose4; la matrice, 5122 versus 7682; et le filtre de résolution en densité (mou) versus spatiale (dur). Ainsi, 8 séries ont été reconstruites pour chacun des 20 CT thoraciques. La qualité d'image de ces 8 séries a d'abord été évaluée qualitativement par deux radiologues expérimentés en aveugle en se basant sur la netteté des parois bronchiques et de l'interface entre le parenchyme pulmonaire et les vaisseaux, puis quantitativement en utilisant une formule de merit, fréquemment utilisée dans le développement de nouveaux algorithmes et filtres de reconstruction. La performance diagnostique de la meilleure série acquise à une dose effective inférieure à 0.3 mSv a été comparée à celle d'un CT de référence effectué à doses standards en relevant les anomalies du parenchyme pulmonaire. Les résultats montrent que la meilleure qualité d'image, tant qualitativement que quantitativement a été obtenue en utilisant iDose4, la matrice 5122 et le filtre mou, avec une concordance parfaite entre les classements quantitatif et qualitatif des 8 séries. D'autre part, la détection des nodules pulmonaires de plus de 4mm étaient similaire sur la meilleure série acquise à une dose effective inférieure à 0.3 mSv et le CT de référence. En conclusion, les CT thoraciques effectués à une dose effective inférieure à 0.3 mSv reconstruits avec iDose4, la matrice 5122 et le filtre mou peuvent être utilisés avec confiance pour diagnostiquer les nodules pulmonaires de plus de 4mm.
Resumo:
Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. Fifty-four percent of the designed sequence replacements exhibited improved pMHC binding as compared to the native TCR, with up to 150-fold increase in affinity, while preserving specificity. Genetically engineered CD8(+) T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity, K D = ∼1 - 5 μM. Beyond the affinity threshold at K D < 1 μM we observed an attenuation in cellular function, in line with the "half-life" model of T cell activation. Our computer-aided protein-engineering approach requires the 3D-structure of the TCR-pMHC complex of interest, which can be obtained from X-ray crystallography. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes when experimental data is not available. Since the accuracy of the models depends on the prediction of the TCR orientation over pMHC, we have complemented the approach with a simplified rigid method to predict this orientation and successfully assessed it using all non-redundant TCR-pMHC crystal structures available. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of stage IV melanoma.