215 resultados para RELATIVE CLUTCH MASS
Resumo:
RATIONALE: The aim of the work was to develop and validate a method for the quantification of vitamin D metabolites in serum using ultra-high-pressure liquid chromatography coupled to mass spectrometry (LC/MS), and to validate a high-resolution mass spectrometry (LC/HRMS) approach against a tandem mass spectrometry (LC/MS/MS) approach using a large clinical sample set. METHODS: A fast, accurate and reliable method for the quantification of the vitamin D metabolites, 25-hydroxyvitamin D2 (25OH-D2) and 25-hydroxyvitamin D3 (25OH-D3), in human serum was developed and validated. The C3 epimer of 25OH-D3 (3-epi-25OH-D3) was also separated from 25OH-D3. The samples were rapidly prepared via a protein precipitation step followed by solid-phase extraction (SPE) using an HLB μelution plate. Quantification was performed using both LC/MS/MS and LC/HRMS systems. RESULTS: Recovery, matrix effect, inter- and intra-day reproducibility were assessed. Lower limits of quantification (LLOQs) were determined for both 25OH-D2 and 25OH-D3 for the LC/MS/MS approach (6.2 and 3.4 µg/L, respectively) and the LC/HRMS approach (2.1 and 1.7 µg/L, respectively). A Passing & Bablok fit was determined between both approaches for 25OH-D3 on 662 clinical samples (1.11 + 1.06x). It was also shown that results can be affected by the inclusion of the isomer 3-epi-25OH-D3. CONCLUSIONS: Quantification of the relevant vitamin D metabolites was successfully developed and validated here. It was shown that LC/HRMS is an accurate, powerful and easy to use approach for quantification within clinical laboratories. Finally, the results here suggest that it is important to separate 3-epi-25OH-D3 from 25OH-D3. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e. g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.
Resumo:
Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
Resumo:
Background/objectives:Bioelectrical impedance analysis (BIA) is used in population and clinical studies as a technique for estimating body composition. Because of significant under-representation in existing literature, we sought to develop and validate predictive equation(s) for BIA for studies in populations of African origin.Subjects/methods:Among five cohorts of the Modeling the Epidemiologic Transition Study, height, weight, waist circumference and body composition, using isotope dilution, were measured in 362 adults, ages 25-45 with mean body mass indexes ranging from 24 to 32. BIA measures of resistance and reactance were measured using tetrapolar placement of electrodes and the same model of analyzer across sites (BIA 101Q, RJL Systems). Multiple linear regression analysis was used to develop equations for predicting fat-free mass (FFM), as measured by isotope dilution; covariates included sex, age, waist, reactance and height(2)/resistance, along with dummy variables for each site. Developed equations were then tested in a validation sample; FFM predicted by previously published equations were tested in the total sample.Results:A site-combined equation and site-specific equations were developed. The mean differences between FFM (reference) and FFM predicted by the study-derived equations were between 0.4 and 0.6âeuro0/00kg (that is, 1% difference between the actual and predicted FFM), and the measured and predicted values were highly correlated. The site-combined equation performed slightly better than the site-specific equations and the previously published equations.Conclusions:Relatively small differences exist between BIA equations to estimate FFM, whether study-derived or published equations, although the site-combined equation performed slightly better than others. The study-derived equations provide an important tool for research in these understudied populations.
Resumo:
BACKGROUND: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether BMI clusters among children and how age-specific BMI clusters are related remains unknown. We aimed to identify and compare the spatial dependence of BMI in adults and children in a Swiss general population, taking into account the area's income level. METHODS: Geo-referenced data from the Bus Santé study (adults, n=6663) and Geneva School Health Service (children, n=3601) were used. We implemented global (Moran's I) and local (local indicators of spatial association (LISA)) indices of spatial autocorrelation to investigate the spatial dependence of BMI in adults (35-74 years) and children (6-7 years). Weight and height were measured using standardized procedures. Five spatial autocorrelation classes (LISA clusters) were defined including the high-high BMI class (high BMI participant's BMI value correlated with high BMI-neighbors' mean BMI values). The spatial distributions of clusters were compared between adults and children with and without adjustment for area's income level. RESULTS: In both adults and children, BMI was clearly not distributed at random across the State of Geneva. Both adults' and children's BMIs were associated with the mean BMI of their neighborhood. We found that the clusters of higher BMI in adults and children are located in close, yet different, areas of the state. Significant clusters of high versus low BMIs were clearly identified in both adults and children. Area's income level was associated with children's BMI clusters. CONCLUSIONS: BMI clusters show a specific spatial dependence in adults and children from the general population. Using a fine-scale spatial analytic approach, we identified life course-specific clusters that could guide tailored interventions.
Resumo:
Theory predicts that males adapt to sperm competition by increasing their investment in testis mass to transfer larger ejaculates. Experimental and comparative data support this prediction. Nevertheless, the relative importance of sperm competition in testis size evolution remains elusive, because experiments vary only sperm competition whereas comparative approaches confound it with other variables, in particular male mating rate. We addressed the relative importance of sperm competition and male mating rate by taking an experimental evolution approach. We subjected populations of Drosophila melanogaster to sex ratios of 1:1, 4:1, and 10:1 (female:male). Female bias decreased sperm competition but increased male mating rate and sperm depletion. After 28 generations of evolution, males from the 10:1 treatment had larger testes than males from other treatments. Thus, testis size evolved in response to mating rate and sperm depletion, not sperm competition. Furthermore, our experiment demonstrated that drift associated with sex ratio distortion limits adaptation; testis size only evolved in populations in which the effect of sex ratio bias on the effective population size had been compensated by increasing the numerical size. We discuss these results with respect to reproductive evolution, genetic drift in natural and experimental populations, and consequences of natural sex ratio distortion.
Resumo:
Summary : Control of pancreatic ß-cell mass and function by gluco-incretin hormones: Identification of novel regulatory mechanisms for the treatment of diabetes The ß-cells of islets of Langerhans secrete insulin to reduce hyperglycemia. The number of pancreatic islet ß-cells and their capacity to secrete insulin is modulated in normal physiological conditions to respond to the metabolic demand of the organism. A failure of the endocrine pancreas to maintain an adequate insulin secretory capacity due to a reduced ß-cell number and function underlies the pathogenesis of both type 1 and type 2 diabetes. The molecular mechanisms controlling the glucose competence of mature ß-cells, i.e., the magnitude of their insulin secretion response to glucose, ß-cell replication, their differentiation from precursor cells and protection against apoptosis are poorly understood. To investigate these mechanisms, we studied the effects on ß-cells of the gluco-incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) which are secreted by intestinal endocrine cells after food intake. Besides acutely potentiating glucose-stimulated insulin secretion, these hormones induce ß-cell differentiation from precursor cells, stimulate mature ß-cell replication, and protect them against apoptosis. Therefore, understanding the molecular basis for gluco-incretin action may lead to the uncovering of novel ß-cell regulatory events with potential application for the treatment or prevention of diabetes. Islets from mice with inactivation of both GIP and GLP-1 receptor genes (dK0) present a defect in glucose-induced insulin secretion and are more sensitive than control islets to cytokine-induced apoptosis. To search for regulatory genes, that may control both glucose competence and protection against apoptosis, we performed comparative transcriptomic analysis of islets from control and dK0 mice. We found a strong down-regulation of the IGF1 Rexpression in dK0 islets. We demonstrated in both a mouse insulin-secreting cell line and primary islets, that GLP-1 stimulated IGF-1R expression and signaling. Importantly, GLP-1induced IGF-1R-dependent Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism. We further showed that activation of IGF-1R signaling was dependent on the secretion of IGF-2 and IGF-2 expression was regulated by nutrients. Finally, we demonstrated that the IGF-Z/IGF-1R autocrine loop was required for GLP-1 i) to protect ß-cells against cytokine-induced apoptosis, ii) to enhance their glucose competence and iii) to increase ß-cell proliferation. Résumé : Contrôle de la masse des cellules ß pancréatiques et de leur fonction par les hormones glucoincrétines: Identification de nouveaux mécanismes régulateurs pour le traitement du diabète Les cellules ß des îlots de Langerhans sécrètent l'insuline pour diminuer l'hyperglycémie. Le nombre de cellules ß et leur capacité à sécréter l'insuline sont modulés dans les conditions physiologiques normales pour répondre à la demande métabolique de l'organisme. Un échec du pancréas endocrine à maintenir sa capacité sécrétoire d'insuline dû à une diminution du nombre et de la fonction des cellules ß conduit au diabète de type 1 et de type 2. Les mécanismes moléculaires contrôlant la compétence au glucose des cellules ß matures, tels que, l'augmentation de la sécrétion d'insuline en réponse au glucose, la réplication des cellules ß, leur différentiation à partir de cellules précurseurs et la protection contre l'apoptose sont encore peu connus. Afin d'examiner ces mécanismes, nous avons étudié les effets sur les cellules ß des hormones gluco-incrétines, glucose-dépendent insulinotropic polypeptide (G1P) et glucagon-like peptide-1 (GLP-1) qui sont sécrétées par les cellules endocrines de l'intestin après la prise alimentaire. En plus de potentialiser la sécrétion d'insuline induite par le glucose, ces hormones induisent la différentiation de cellules ß à partir de cellules précurseurs, stimulent leur prolifération et les protègent contre l'apoptose. Par conséquent, comprendre les mécanismes d'action des gluco-incrétines permettrait de découvrir de nouveaux processus régulant les cellules ß avec d'éventuelles applications dans le traitement ou la prévention du diabète. Les îlots de souris ayant une double inactivation des gènes pour les récepteurs du GIP et du GLP-1 (dK0) présentent un défaut de sécrétion d'insuline stimulée par le glucose et une sensibilité accrue à l'apoptose induite par les cytokines. Afin de déterminer les gènes régulés, qui pourraient contrôler à la fois la compétence au glucose et la protection contre l'apoptose, nous avons effectué une analyse comparative transcriptomique sur des îlots de souris contrôles et dKO. Nous avons constaté une forte diminution de l'expression d'IGF-1R dans les îlots dKO. Nous avons démontré, à la fois dans une lignée cellulaire murine sécrétant l'insuline et dans îlots primaires, que le GLP-1 stimulait l'expression d'IGF-1R et sa voie de signalisation. Par ailleurs, la phosphorylation d'Akt dépendante d'IGF1-R induite parle GLP-1 nécessite une sécrétion active, indiquant la présence d'un mécanisme d'activation autocrine. Nous avons ensuite montré que l'activation de la voie de signalisation d'IGF-1R était dépendante de la sécrétion d'IGF-2, dont l'expression est régulée par les nutriments. Finalement, nous avons démontré que la boucle autocrine IGF-2/IGF-1R est nécessaire pour le GLP-1 i) pour protéger les cellules ß contre l'apoptose induite par les cytokines, ii) pour améliorer la compétence au glucose et iii) pour augmenter la prolifération des cellules ß. Résumé tout public : Contrôle de la masse des cellules ß pancréatiques et de leur fonction par les hormones gluco-incrétines: Identification de nouveaux mécanismes régulateurs pour le traitement du diabète Chez les mammifères, la concentration de glucose sanguine (glycémie) est régulée et maintenue à une valeur relativement constante d'environ 5 mM. Cette régulation est principalement contrôlée par 2 hormones produites par les îlots pancréatiques de Langerhans: l'insuline sécrétée par les cellules ß et le glucagon sécrété par les cellules a. A la suite d'un repas, l'augmentation de la glycémie entraîne la sécrétion d'insuline ce qui permet le stockage du glucose dans le foie, les muscles et le tissu adipeux afin de diminuer le taux de glucose circulant. Lors d'un jeûne, la diminution de la glycémie permet la sécrétion de glucagon favorisant alors la production de glucose par le foie, normalisant ainsi la glycémie. Le nombre de cellules ß et leur capacité sécrétoire s'adaptent aux variations de la demande métabolique pour assurer une normoglycémie. Une destruction complète ou partielle des cellules ß conduit respectivement au diabète de type 1 et de type 2. Bien que l'augmentation de la glycémie soit le facteur stimulant de la sécrétion d'insuline, des hormones gluco-incrétines, principalement le GLP-1 (glucagon-like peptide-1) et le GIP (glucose-dependent insulinotropic polypeptide) sont libérées par l'intestin en réponse aux nutriments (glucose, acides gras) et agissent au niveau des cellules ß, potentialisant la sécrétion d'insuline induite par le glucose, stimulant leur prolifération, induisant la différentiation de cellules précurseurs en cellules ß matures et les protègent contre la mort cellulaire (apoptose). Afin d'étudier plus en détail ces mécanismes, nous avons généré des souris déficientes pour les récepteurs du GIP et du GLP-l. Les îlots pancréatiques de ces souris présentent un défaut de sécrétion d'insuline stimulée par le glucose et une sensibilité accrue à l'apoptose par rapport aux îlots de souris contrôles. Nous avons donc cherché les gènes régulés pas ces hormones contrôlant la sécrétion d'insuline et la protection contre l'apoptose. Nous avons constaté une forte diminution de l'expression du récepteur à l'IGF-1 (IGF-1R) dans les îlots de souris déficientes pour les récepteurs des gluco-incrétines. Nous avons démontré dans un model de cellules ß en culture et d'îlots que le GLP-1 augmentait l'expression d'IGF-1R et la sécrétion de son ligand (IGF-2) permettant l'activation de la voie de signalisation. Finalement, nous avons montré que l'activation de la boucle IGF-2/IGF-1R induite par le GLP-1 était nécessaire pour la protection contre l'apoptose, l'augmentation de la sécrétion et la prolifération des cellules ß.
Resumo:
OBJECTIVE: To assess total free-living energy expenditure (EE) in Gambian farmers with two independent methods, and to determine the most realistic free-living EE and physical activity in order to establish energy requirements for rural populations in developing countries. DESIGN: In this cross-sectional study two methods were applied at the same time. SETTING: Three rural villages and Dunn Nutrition Centre Keneba, MRC, The Gambia. SUBJECTS: Eight healthy, male subjects were recruited from three rural Gambian villages in the sub-Sahelian area (age: 25 +/- 4y; weight: 61.2 +/- 10.1 kg; height: 169.5 +/- 6.5 cm, body mass index: 21.2 +/- 2.5 kg/m2). INTERVENTION: We assessed free-living EE with two inconspicuous and independent methods: the first one used doubly labeled water (DLW) (2H2 18O) over a period of 12 days, whereas the second one was based on continuous heart rate (HR) measurements on two to three days using individual regression lines (HR vs EE) established by indirect calorimetry in a respiration chamber. Isotopic dilution of deuterium (2H2O) was also used to assess total body water and hence fat-free mass (FFM). RESULTS: EE assessed by DLW was found to be 3880 +/- 994 kcal/day (16.2 +/- 4.2 MJ/day). Expressed per unit body weight the EE averaged 64.2 +/- 9.3 kcal/kg/d (269 +/- 38 kJ/kg/d). These results were consistent with the EE results assessed by HR: 3847 +/- 605 kcal/d (16.1 +/- 2.5 MJ/d) or 63.4 +/- 8.2 kcal/kg/d (265 +/- 34kJ/kg/d). Physical activity index, expressed as a multiple of basal metabolic rate (BMR), averaged 2.40 +/- 0.41 (DLW) or 2.40 +/- 0.28 (HR). CONCLUSIONS: These findings suggest an extremely high level of physical activity in Gambian men during intense agricultural work (wet season). This contrasts with the relative food shortage, previously reported during the harvesting period. We conclude that the assessment of EE during the agricultural season in non-industrialized countries needs further investigations in order to obtain information on the energy requirement of these populations. For this purpose the use of the DLW and HR methods have been shown to be useful and complementary.
Resumo:
A new analytical approach for measuring methane in tissues is presented. For the first time, the use of in situ-produced, stably labelled CDH(3) provides a reliable and precise methane quantification. This method was applied to postmortem samples obtained from two victims to help determine the explosion origin. There was evidence of methane in the adipose tissue (82 nmol/g) and cardiac blood (1.3 nmol/g) of one victim, which corresponded to a lethal methane outburst. These results are discussed in the context of the available literature to define an analysis protocol for application in the event of a gas explosion.
Resumo:
The Totalp-Platta-Malenco ophiolites in the Eastern Central Alps offer a unique opportunity to study the behaviour of Li, Be and B in ultramafic rocks in response to serpentinization and to progressive Alpine metamorphism. These units represent the remnants of a former ocean-continent transition that was intensely serpentinized during exposure on the Jurassic seafloor of the Ligurian Tethys. From north to the south, three isograd reactions (lizardite double right arrow antigorite + brucite; lizardite + talc double right arrow antigorite; lizardite + tremolite double right arrow antigorite + diopside) have been used to quantify the evolution of the light element content of metamorphic minerals. We determined the Li, Be and B concentrations in major silicate minerals from the ultramafic bodies of Totalp, Platta and Malenco by secondary ion mass spectrometry. Mantle minerals have Be concentrations (e.g. <0.001-0.009 mu g/g in olivine) similar to the metamorphic minerals that replace them (e.g. <0.001-0.016 mu g/g in serpentine). The mantle signature of Be is thus neither erased during seafloor alteration nor by progressive metamorphism from prehnite-pumpellyite to epidote-amphibolite facies. In contrast, the Li and B inventories of metamorphic minerals are related to the lizardite-to-antigorite transition. Both elements display higher concentrations in the low-temperature serpentine polymorph lizardite (max. 156 mu/g Li, max. 318 mu g/g B) than in antigorite (max. 0.11 mu g/g Li, max. 12 mu g/g B). Calculated average B/Li ratios for lizardite (similar to 1395) and antigorite (similar to 115) indicate that Li fractionates from B during the lizardite-to-antigorite transition during prograde metamorphism in ultramafic rocks. In subduction zones, this signature is likely to be recorded in the B-rich nature of forearc fluids. Relative to oceanic mantle the Be content of mantle clinopyroxene is much higher, but similar to Be values from mantle xenoliths and subduction-related peridotite massifs. These data support previous hypothesis that the mantle rocks from the Eastern Central Alps have a subcontinental origin. We conclude that Be behaves conservatively during subduction metamorphism of ultramafic rocks, at least at low-temperature, and thus retains the fingerprint of ancient subduction-related igneous events in mantle peridotites. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: Little is known about the influence of different training types on relative fat mobilization with exercise. The purpose of this study was to analyze the changes induced by aerobic training (AT), resistance (RT) or a combination of both (AT+RT) on total fat mass (TFM) and regional fat mass (RFM). Further, the relative contribution of different regions, upper limbs (UL), lower limbs (LL), and trunk (Tr), were compared. DESIGN AND METHODS: Forty-five overweight and premenopausal women were randomized in either AT, RT or AT+RT. All training groups exercised for the same duration (60 min), 3 times per week for 5 months. Body composition was estimated using dual energy X-ray absorptiometry. RESULTS: TFM decreased significantly in all groups (-4.6 ± 1.9 kg; -3.8 ± 2.6 kg, and -4.7 ± 3.0 kg in AT, RT, and AT+RT groups respectively; P < 0.001). The relative contribution of FM into each segment changed significantly: TrFM represented 46.6% ± 5.8% of TFM at baseline and reduced to 43.1% ± 5.5% (P < 0.001); LLFM was 39.7% ± 5.8% vs. 41.6% ± 5.7% (P < 0.01); ULFM was 11.3% ± 1.3% vs. 12.2% ± 1.4% (P < 0.01). CONCLUSION: Training type did not influence changes of TFM and RFM. Fat mobilization came predominantly from Tr in all training protocols. These findings suggest that overweight and obese women can reduce TFM and RFM, independently of training type.