221 resultados para RAW 264.7 cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Small intestinal submucosa is a xenogenic, acellular, collagen rich membrane with inherent growth factors that has previously been shown to promote in vivo bladder regeneration. We evaluate in vitro use of small intestinal submucosa to support the individual and combined growth of bladder urothelial cells and smooth muscle cells for potential use in tissue engineering techniques, and in vitro study of the cellular mechanisms involved in bladder regeneration. MATERIALS AND METHODS: Primary cultures of human bladder urothelial cells and smooth muscle cells were established using standard enzymatic digestion or explant techniques. Cultured cells were then seeded on small intestinal submucosa at a density of 1 x 105 cells per cm.2, incubated and harvested at 3, 7, 14 and 28 days. The 5 separate culture methods evaluated were urothelial cells seeded alone on the mucosal surface of small intestinal submucosa, smooth muscle cells seeded alone on the mucosal surface, layered coculture of smooth muscle cells seeded on the mucosal surface followed by urothelial cells 1 hour later, sandwich coculture of smooth muscle cells seeded on the serosal surface followed by seeding of urothelial cells on the mucosal surface 24 hours later, and mixed coculture of urothelial cells and smooth muscle cells mixed and seeded together on the mucosal surface. Following harvesting at the designated time points small intestinal submucosa cell constructs were formalin fixed and processed for routine histology including Masson trichrome staining. Specific cell growth characteristics were studied with particular attention to cell morphology, cell proliferation and layering, cell sorting, presence of a pseudostratified urothelium and matrix penetrance. To aid in the identification of smooth muscle cells and urothelial cells in the coculture groups, immunohistochemical analysis was performed with antibodies to alpha-smooth muscle actin and cytokeratins AE1/AE3. RESULTS: Progressive 3-dimensional growth of urothelial cells and smooth muscle cells occurred in vitro on small intestinal submucosa. When seeded alone urothelial cells and smooth muscle cells grew in several layers with minimal to no matrix penetration. In contrast, layered, mixed and sandwich coculture methods demonstrated significant enhancement of smooth muscle cell penetration of the membrane. The layered and sandwich coculture techniques resulted in organized cell sorting, formation of a well-defined pseudostratified urothelium and multilayered smooth muscle cells with enhanced matrix penetration. With the mixed coculture technique there was no evidence of cell sorting although matrix penetrance by the smooth muscle cells was evident. Immunohistochemical studies demonstrated that urothelial cells and smooth muscle cells maintain the expression of the phenotypic markers of differentiation alpha-smooth muscle actin and cytokeratins AE1/AE3. CONCLUSIONS: Small intestinal submucosa supports the 3-dimensional growth of human bladder cells in vitro. Successful combined growth of bladder cells on small intestinal submucosa with different seeding techniques has important future clinical implications with respect to tissue engineering technology. The results of our study demonstrate that there are important smooth muscle cell-epithelial cell interactions involved in determining the type of in vitro cell growth that occurs on small intestinal submucosa. Small intestinal submucosa is a valuable tool for in vitro study of the cell-cell and cell-matrix interactions that are involved in regeneration and various disease processes of the bladder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine in chimpanzees if candidate HIV-1 subunit protein vaccines were capable of eliciting long-lasting T-cell memory responses in the absence of viral infection, and to determine the specific characteristics of these responses. DESIGN: A longitudinal study of cell-mediated immune responses induced in three chimpanzees following immunization with subunit envelope glycoproteins of either HIV-1 or herpes simplex virus (HSV)-2. Following these pre-clinical observations, four human volunteers who had been immunized 7 years previously with the same HIV-1 vaccine candidate donated blood for assessment of immune responses. METHODS: Responses were monitored by protein and peptide based ELISpot assays, lymphocyte proliferation, and intracellular cytokine staining. Humoral responses were assessed by enzyme-linked immunosorbent assay and virus neutralization assays. RESULTS: Although antigen (Ag)-specific CD4 T-cell responses persisted for at least 5 years in chimpanzees, CD8 T-cell responses were discordant and declined within 2 years. Detailed cellular analyses revealed that strong Th1 in addition to Th2 type responses were induced by AS2/gp120 and persisted, whereas CD8 T-cell memory declined in peripheral blood. The specificity of both Th and cytotoxic T-lymphocyte responses revealed that the majority of responses were directed to conserved epitopes. The remarkable persistence of Ag-specific CD4 T-cell memory was characterized as a population of the CD45RA-CD62L-CCR7- "effector phenotype" producing the cytokines IFNgamma, IL-2 and IL-4 upon epitope-specific recognition. Importantly, results in chimpanzees were confirmed in peripheral blood of one of four human volunteers studied more than 7 years after immunization. CONCLUSION: These studies demonstrate that epitope-specific Th1 and Th2 cytokine-dependent Th responses can be induced and maintained for longer than 5 years by immunization with subunit proteins of HIV-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gammadelta T cells are implicated in host defense against microbes and tumors but their mode of function remains largely unresolved. Here, we have investigated the ability of activated human Vgamma9Vdelta2(+) T cells (termed gammadelta T-APCs) to cross-present microbial and tumor antigens to CD8(+) alphabeta T cells. Although this process is thought to be mediated best by DCs, adoptive transfer of ex vivo antigen-loaded, human DCs during immunotherapy of cancer patients has shown limited success. We report that gammadelta T-APCs take up and process soluble proteins and induce proliferation, target cell killing and cytokine production responses in antigen-experienced and naïve CD8(+) alphabeta T cells. Induction of APC functions in Vgamma9Vdelta2(+) T cells was accompanied by the up-regulation of costimulatory and MHC class I molecules. In contrast, the functional predominance of the immunoproteasome was a characteristic of gammadelta T cells irrespective of their state of activation. Gammadelta T-APCs were more efficient in antigen cross-presentation than monocyte-derived DCs, which is in contrast to the strong induction of CD4(+) alphabeta T cell responses by both types of APCs. Our study reveals unexpected properties of human gammadelta T-APCs in the induction of CD8(+) alphabeta T effector cells, and justifies their further exploration in immunotherapy research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major histocompatibility complex class II (MHCII) expression is regulated by the transcriptional coactivator CIITA. Positive selection of CD4(+) T cells is abrogated in mice lacking one of the promoters (pIV) of the Mhc2ta gene. This is entirely due to the absence of MHCII expression in thymic epithelia, as demonstrated by bone marrow transfer experiments between wild-type and pIV(-/-) mice. Medullary thymic epithelial cells (mTECs) are also MHCII(-) in pIV(-/-) mice. Bone marrow-derived, professional antigen-presenting cells (APCs) retain normal MHCII expression in pIV(-/-) mice, including those believed to mediate negative selection in the thymic medulla. Endogenous retroviruses thus retain their ability to sustain negative selection of the residual CD4(+) thymocytes in pIV(-/-) mice. Interestingly, the passive acquisition of MHCII molecules by thymocytes is abrogated in pIV(-/-) mice. This identifies thymic epithelial cells as the source of this passive transfer. In peripheral lymphoid organs, the CD4(+) T-cell population of pIV(-/-) mice is quantitatively and qualitatively comparable to that of MHCII-deficient mice. It comprises a high proportion of CD1-restricted natural killer T cells, which results in a bias of the V beta repertoire of the residual CD4(+) T-cell population. We have also addressed the identity of the signal that sustains pIV expression in cortical epithelia. We found that the Jak/STAT pathways activated by the common gamma chain (CD132) or common beta chain (CDw131) cytokine receptors are not required for MHCII expression in thymic cortical epithelia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolyl-rich peptides derived from hydrolysates of bovine caseins have been previously shown to inhibit angiotensin converting enzyme (ACE) activity, suggesting that they may also be able to inhibit the enzymatic activities of prolyl-specific peptidases. This study shows that peptides derived from α(S1)-casein and β-casein inhibited the enzymatic activities of purified recombinant matrix metalloprotease (MMP)-2, MMP-7, and MMP-9. The inhibitory efficacy was sequence-dependent. These peptides also selectively inhibited the enzymatic activities of prolyl-amino-peptidases, prolyl-amino-dipeptidases, and prolyl-endopeptidases in extracts of HT-29 and SW480 human colon carcinoma cells, but not in intact cells. They were not cytotoxic or growth inhibitory for these cells. Thus, the prolyl-rich selected peptides were good and selective inhibitors of MMPs and post-proline-cleaving proteases, demonstrating their potential to control inadequate proteolytic activity in the human digestive tract, without inducing cytotoxic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein C3 of the complement system is known for its role in the nonspecific immune response. Covalent binding of C3b to antigen upon complement activation also plays a significant role in specific T cell immune response. C3b-antigen complexes can bind to complement receptors on the antigen-presenting cell, and the C3b antigen link (most often an ester link) remains fairly stable inside the cells. In this study, IgG1,kappa and IgG2a,kappa murine monoclonal antibodies (mAb) were used as antigens; covalent complexes between mAb and C3b were produced and purified in vitro from purified proteins; human B cell lines and T cell clones were raised from tumor patients who received mAb injections for cancer therapy or diagnosis. Recognition of epitopes of these mAb by T cell clones when the mAb were processed alone or bound to C3b was compared. IgG or IgG-C3b complexes presented by B cell lines were able to stimulate proliferation of kappa light chain-specific T cell clones at similar concentrations. In contrast, IgG-C3b complex recognition by heavy chain-specific T cell clones required 100-fold less IgG-C3b than uncomplexed IgG. As C3b was shown to be covalently bound only to the IgG heavy chains in the complexes, C3b chaperoning is restricted to only the IgG heavy chain and selectively influences intracellular steps of IgG heavy chain processing. This differential modulation of C3b suggests an early dissociation of IgG heavy and light chains in antigen-presenting cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinesins and myosins transport cargos to specific locations along microtubules and actin filaments, respectively. The relative contribution of the two transport systems for cell polarization varies extensively in different cell types, with some cells relying exclusively on actin-based transport while others mainly use microtubules. Using fission yeast, we asked whether one transport system can substitute for the other. In this organism, microtubules and actin cables both contribute to polarized growth by transporting cargos to cell poles, but with distinct roles: microtubules transport landmarks to label cell poles for growth and actin assembly but do not directly contribute to the growth process [1]. Actin cables serve as tracks for myosin V delivery of growth vesicles to cell poles [2-4]. We engineered a chimera between the motor domain of the kinesin 7 Tea2 and the globular tail of the myosin V Myo52, which we show transports Ypt3, a myosin cargo receptor, to cell poles along microtubules. Remarkably, this chimera restores polarized growth and viability to cells lacking actin cables. It also bypasses the normal microtubule-dependent marking of cell poles for polarized growth, but not for other functions. Thus, a synthetic motor protein successfully redirects cargos along a distinct cytoskeletal route.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the thyroid hormones on target cells are mediated through nuclear T3 receptors. In the peripheral nervous system, nuclear T3 receptors were previously detected with the monoclonal antibody 2B3 mAb in all the primary sensory neurons throughout neuronal life and in peripheral glia at the perinatal period only (Eur. J. Neurosci. 5, 319, 1993). To determine whether these nuclear T3 receptors correspond to functional ones able to bind T3, cryostat sections and in vitro cell cultures of dorsal root ganglion (DRG) or sciatic nerve were incubated with 0.1 nM [125I]-labeled T3, either alone to visualize the total T3-binding sites or added with a 10(3) fold excess of unlabeled T3 to estimate the part due to the non-specific T3-binding. After glutaraldehyde fixation, radioautography showed that the specific T3-binding sites were largely prevalent. The T3-binding capacity of peripheral glia in DRG and sciatic nerve was restricted to the perinatal period in vivo and to Schwann cells cultured in vitro. In all the primary sensory neurons, specific T3-binding sites were disclosed in foetal as well as adult rats. The detection of the T3-binding sites in the nucleus indicated that the nuclear T3 receptors are functional. Moreover the concomitant presence of both T3-binding sites and T3 receptors alpha isoforms in the perikaryon of DRG neurons infers that: 1) [125I]-labeled T3 can be retained on the T3-binding 'E' domain of nascent alpha 1 isoform molecules newly-synthesized on the perikaryal ribosomes; 2) the alpha isoforms translocated to the nucleus are modified by posttranslational changes and finally recognized by 2B3 mAb as nuclear T3 receptor. In conclusion, the radioautographic visualization of the T3-binding sites in peripheral neurons and glia confirms that the nuclear T3 receptors are functional and contributes to clarify the discordant intracellular localization provided by the immunocytochemical detection of nuclear T3 receptors and T3 receptor alpha isoforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to gain insight into the biology of fetal skin during culture, cellular proteins were studied during four culture passages (P00, P01, P04 as well as P10) using high-resolution two-dimensional (2-D) gel electrophoresis and mass spectrometry (MS). Bioinformatic analyses were focused on a region of each gel corresponding to pI between 4 and 8 and M(r) from 8000 to 35 000. In this area, 373 +/- 42 spots were detected (N = 18). Twenty-six spots presented an integrated intensity that increased in the higher passages, whereas five spots showed a progressively lower intensity in subsequent passaging. MS analysis was performed on spots that were unambiguously identified on preparative 2-D gels. Among the 26 spots showing an increased size between P00 and P10, 9 were identified, and corresponded to 3 proteins: (i) peptidyl-prolyl cis-trans isomerase A (P05092; cyclophilin A or cyclosporin A-binding protein), (ii) triosephosphate isomerase (P00938), and (iii) enoyl-CoA hydratase (P30084). Among these nine identified spots, three were absent at P00, but were present at P10. They corresponded to isoforms of peptidyl-prolyl cis-trans isomerase and triosephosphate isomerase, respectively. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the acidic isoforms of triosephosphate isomerase showed modifications of cysteine residues to cysteic acid. All these isoforms were clearly present in the skin cells of a 4-year-old child, as well as in skin cells from a 80-year-old man, at P00. These observations probably reflect either an oxidative stress related to cell culture, or, alternatively, maturation, differentiation and the aging of the cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ.