191 resultados para Predictive Modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bone health is a concern when treating early stage breast cancer patients with adjuvant aromatase inhibitors. Early detection of patients (pts) at risk of osteoporosis and fractures may be helpful for starting preventive therapies and selecting the most appropriate endocrine therapy schedule. We present statistical models describing the evolution of lumbar and hip bone mineral density (BMD) in pts treated with tamoxifen (T), letrozole (L) and sequences of T and L. Methods: Available dual-energy x-ray absorptiometry exams (DXA) of pts treated in trial BIG 1-98 were retrospectively collected from Swiss centers. Treatment arms: A) T for 5 years, B) L for 5 years, C) 2 years of T followed by 3 years of L and, D) 2 years of L followed by 3 years of T. Pts without DXA were used as a control for detecting selection biases. Patients randomized to arm A were subsequently allowed an unplanned switch from T to L. Allowing for variations between DXA machines and centres, two repeated measures models, using a covariance structure that allow for different times between DXA, were used to estimate changes in hip and lumbar BMD (g/cm2) from trial randomization. Prospectively defined covariates, considered as fixed effects in the multivariable models in an intention to treat analysis, at the time of trial randomization were: age, height, weight, hysterectomy, race, known osteoporosis, tobacco use, prior bone fracture, prior hormone replacement therapy (HRT), bisphosphonate use and previous neo-/adjuvant chemotherapy (ChT). Similarly, the T-scores for lumbar and hip BMD measurements were modeled using a per-protocol approach (allowing for treatment switch in arm A), specifically studying the effect of each therapy upon T-score percentage. Results: A total of 247 out of 546 pts had between 1 and 5 DXA; a total of 576 DXA were collected. Number of DXA measurements per arm were; arm A 133, B 137, C 141 and D 135. The median follow-up time was 5.8 years. Significant factors positively correlated with lumbar and hip BMD in the multivariate analysis were weight, previous HRT use, neo-/adjuvant ChT, hysterectomy and height. Significant negatively correlated factors in the models were osteoporosis, treatment arm (B/C/D vs. A), time since endocrine therapy start, age and smoking (current vs. never).Modeling the T-score percentage, differences from T to L were -4.199% (p = 0.036) and -4.907% (p = 0.025) for the hip and lumbar measurements respectively, before any treatment switch occurred. Conclusions: Our statistical models describe the lumbar and hip BMD evolution for pts treated with L and/or T. The results of both localisations confirm that, contrary to expectation, the sequential schedules do not seem less detrimental for the BMD than L monotherapy. The estimated difference in BMD T-score percent is at least 4% from T to L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Modelling epidemiological knowledge in validated clinical scores is a practical mean of integrating EBM to usual care. Existing scores about cardiovascular disease have been largely developed in emergency settings, but few in primary care. Such a toll is needed for general practitioners (GP) to evaluate the probability of ischemic heart disease (IHD) in patients with non-traumatic chest pain. Objective: To develop a predictive model to use as a clinical score for detecting IHD in patients with non-traumatic chest-pain in primary care. Methods: A post-hoc secondary analysis on data from an observational study including 672 patients with chest pain of which 85 had IHD diagnosed by their GP during the year following their inclusion. Best subset method was used to select 8 predictive variables from univariate analysis and fitted in a multivariate logistic regression model to define the score. Reliability of the model was assessed using split-group method. Results: Significant predictors were: age (0-3 points), gender (1 point), having at least one cardiovascular risks factor (hypertension, dyslipidemia, diabetes, smoking, family history of CVD; 3 points), personal history of cardiovascular disease (1 point), duration of chest pain from 1 to 60 minutes (2 points), substernal chest pain (1 point), pain increasing with exertion (1 point) and absence of tenderness at palpation (1 point). Area under the ROC curve for the score was of 0.95 (IC95% 0.93; 0.97). Patients were categorised in three groups, low risk of IHD (score under 6; n = 360), moderate risk of IHD (score from 6 to 8; n = 187) and high risk of IHD (score from 9-13; n = 125). Prevalence of IHD in each group was respectively of 0%, 6.7%, 58.5%. Reliability of the model seems satisfactory as the model developed from the derivation set predicted perfectly (p = 0.948) the number of patients in each group in the validation set. Conclusion: This clinical score based only on history and physical exams can be an important tool in the practice of the general physician for the prediction of ischemic heart disease in patients complaining of chest pain. The score below 6 points (in more than half of our population) can avoid demanding complementary exams for selected patients (ECG, laboratory tests) because of the very low risk of IHD. Score above 6 points needs investigation to detect or rule out IHD. Further external validation is required in ambulatory settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME: Introduction L'objectif de cette étude prospective de cohorte était d'estimer l'efficacité d'un processus de prise en charge standardisé de patients dépendants de l'alcool dans le contexte d'un hôpital universitaire de soins généraux. Ce modèle de prise en charge comprenait une évaluation multidisciplinaire puis des propositions de traitements individualisées et spécifiques (« projet thérapeutique »). Patients et méthode 165 patients alcoolo-dépendants furent recrutés dans différents services de l'hôpital universitaire, y compris la policlinique de médecine. Ils furent dans un premier temps évalués par une équipe multidisciplinaire (médecin interniste, psychiatre, assistant social), puis un projet thérapeutique spécialisé et individualisé leur fut proposé lors d'une rencontre réunissant le patient et l'équipe. Tous les patients éligibles acceptant de participer à l'étude (n=68) furent interrogés au moment de l'inclusion puis 2 et 6 mois plus tard par une psychologue. Des informations standardisées furent recueillies sur les caractéristiques des patients, le processus de prise en charge et l'évolution à 6 mois. Les critères de succès utilisés à 6 mois furent: l'adhérence au traitement proposé et l'abstinence d'alcool. Résultats Lors de l'évaluation à 6 mois, 43% des patients étaient toujours en traitement et 28% étaient abstinents. Les variables prédictrices de succès parmi les caractéristiques des patients étaient un âge de plus de 45 ans, ne pas vivre seul, avoir un travail et être motivé pour un traitement (RAATE-A <18). Pour les variables dépendantes du processus de prise en charge, un sevrage complet de l'alcool lors de la rencontre multidisciplinaire ainsi que la présence de tous les membres de l'équipe à cette réunion étaient des facteurs associés au succès. Conclusion L'efficacité de ce modèle d'intervention pour patients dépendants de l'alcool en hôpital de soins généraux s'est montrée satisfaisante, en particulier pour le critère de succès adhérence au traitement. Des variables associées au succès ou à l'échec à 6 mois ont pu être mises en évidence, permettant d'identifier des populations de patients évoluant différemment. Des stratégies de prise en charge tenant compte de ces éléments pourraient donc être développées, permettant de proposer des traitements plus adaptés ainsi qu'une meilleure rétention des patients alcooliques dans les programmes thérapeutiques. ABSTRACT. To assess the effectiveness of a multidisciplinary evaluation and referral process in a prospective cohort of general hospital patients with alcohol dependence, alcohol-dependent patients were identified in the wards of the general hospital and its primary care center. They were evaluated and then referred to treatment by a multidisciplinary team; those patients who accepted to participate in this cohort study were consecutively included and followed for 6 months. Not included patients were lost for follow-up, whereas all included patients were assessed at time of inclusion, 2 and 6 months later by a research psychologist in order to collect standardized baseline patients' characteristics, process salient features and patients outcomes (defined as treatment adherence and abstinence). Multidisciplinary evaluation and therapeutic referral was feasible and effective, with a success rate of 43% for treatment adherence and 28% for abstinence at 6 months. Among patients' characteristics, predictors of success were an age over 45, not living alone, being employed and being motivated to treatment (RAATE-A score < 18), whereas successful process characteristics included detoxification of the patient at time of referral and a full multidisciplinary referral meeting. This multidisciplinary model of evaluation and referral of alcohol dependent patients of a general hospital had a satisfactory level of effectiveness. Predictors of success and failure allow the identification of subsets of patients for whom new strategies of motivation and treatment referral should be designed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cognitive Performance Scale (CPS) was initially designed to assess cognition in long term care residents. Subsequently, the CPS has also been used among in-home, post-acute, and acute care populations even though CPS' clinimetric performance has not been studied in these settings. This study aimed to determine CPS agreement with the Mini Mental Status Exam (MMSE) and its predictive validity for institutionalization and death in a cohort (N=401) of elderly medical inpatients aged 75 years and over. Medical, physical and mental status were assessed upon admission. The same day, the patient's nurse completed the CPS by interview. Follow-up data were gathered from the central billing system (nursing home stay) and proxies (death). Cognitive impairment was present in 92 (23%) patients according to CPS (score >or= 2). Agreement with MMSE was moderate (kappa 0.52, P<.001). Analysis of discordant results suggested that cognitive impairment was overestimated by the CPS in dependent patients with comorbidities and depressive symptoms, and underestimated in older ones. During follow-up, subjects with abnormal CPS had increased risks of death (adjusted hazard ratio (adjHR) 1.7, 95% CI 1.0-2.8, P=.035) and institutionalization (adjHR 2.7, 95% CI 1.3-5.3, P=.006), independent of demographic, health and functional status. Interestingly, subjects with abnormal CPS were at increased risk of death only if they also had abnormal MMSE. The CPS predicted death and institutionalization during follow-up, but correlated moderately well with the MMSE. Combining CPS and MMSE provided additional predictive information, suggesting that domains other than cognition are assessed by professionals when using the CPS in elderly medical inpatients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While for many years the diagnosis and therapy of colon cancer did not change drastically, recently new drugs (irinotecan and oxaliplatin, used in adjuvant or neo-adjuvant approaches) and even more recently the introduction of therapies targeting the epidermal growth factor receptor (EGFR) through the monoclonal antibodies cetuximab and panitumumab, are revolutionizing the field. The finding that only patients with a tumor with a wild type (non mutated) KRAS gene respond to anti-EGFR therapy has also affected the way pathologists address colorectal cancer. Molecular analysis of the KRAS gene has become almost a routine in a very short period of time. Pathologists will have to be prepared for a new era: from standard morphology based diagnostic procedures to the prediction of response to therapy using molecular tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Attention deficit and hyperactivity disorder (ADHD) is one of the most frequent disorders in childhood and adolescence. Both neurocognitive and environmental factors have been related to ADHD. The current study contributes to the documentation of the predictive relation between early attachment deprivation and ADHD. METHOD: Data were collected from 641 adopted adolescents (53.2 % girls) aged 11-16 years in five countries, using the DSM oriented scale for ADHD of the Child Behavior Checklist (CBCL) (Achenbach and Rescorla, Manual for the ASEBA school-age forms and profiles. University of Vermont, Research Center for Children, Youth and Families, Burlington, 2001). The influence of attachment deprivation on ADHD symptoms was initially tested taking into consideration several key variables that have been reported as influencing ADHD at the adoptee level (age, gender, length of time in the adoptive family, parents' educational level and marital status), and at the level of the country of origin and country of adoption (poverty, quality of health services and values). The analyses were computed using the multilevel modeling technique. RESULTS: The results showed that an increase in the level of ADHD symptoms was predicted by the duration of exposure to early attachment deprivation, estimated from the age of adoption, after controlling for the influence of adoptee and country variables. The effect of the age of adoption was also demonstrated to be specific to the level of ADHD symptoms in comparison to both the externalizing and internalizing behavior scales of the CBCL. CONCLUSION: Deprivation of stable and sensitive care in infancy may have long-lasting consequences for children's development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indirect topographic variables have been used successfully as surrogates for disturbance processes in plant species distribution models (SDM) in mountain environments. However, no SDM studies have directly tested the performance of disturbance variables. In this study, we developed two disturbance variables: a geomorphic index (GEO) and an index of snow redistribution by wind (SNOW). These were developed in order to assess how they improved both the fit and predictive power of presenceabsence SDM based on commonly used topoclimatic (TC) variables for 91 plants in the Western Swiss Alps. The individual contribution of the disturbance variables was compared to TC variables. Maps of models were prepared to spatially test the effect of disturbance variables. On average, disturbance variables significantly improved the fit but not the predictive power of the TC models and their individual contribution was weak (5.6% for GEO and 3.3% for SNOW). However their maximum individual contribution was important (24.7% and 20.7%). Finally, maps including disturbance variables (i) were significantly divergent from TC models in terms of predicted suitable surfaces and connectivity between potential habitats, and (ii) were interpreted as more ecologically relevant. Disturbance variables did not improve the transferability of models at the local scale in a complex mountain system, and the performance and contribution of these variables were highly species-specific. However, improved spatial projections and change in connectivity are important issues when preparing projections under climate change because the future range size of the species will determine the sensitivity to changing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the prognostic and predictive value of Ki-67 labeling index (LI) in a trial comparing letrozole (Let) with tamoxifen (Tam) as adjuvant therapy in postmenopausal women with early breast cancer. PATIENTS AND METHODS: Breast International Group (BIG) trial 1-98 randomly assigned 8,010 patients to four treatment arms comparing Let and Tam with sequences of each agent. Of 4,922 patients randomly assigned to receive 5 years of monotherapy with either agent, 2,685 had primary tumor material available for central pathology assessment of Ki-67 LI by immunohistochemistry and had tumors confirmed to express estrogen receptors after central review. The prognostic and predictive value of centrally measured Ki-67 LI on disease-free survival (DFS) were assessed among these patients using proportional hazards modeling, with Ki-67 LI values dichotomized at the median value of 11%. RESULTS: Higher values of Ki-67 LI were associated with adverse prognostic factors and with worse DFS (hazard ratio [HR; high:low] = 1.8; 95% CI, 1.4 to 2.3). The magnitude of the treatment benefit for Let versus Tam was greater among patients with high tumor Ki-67 LI (HR [Let:Tam] = 0.53; 95% CI, 0.39 to 0.72) than among patients with low tumor Ki-67 LI (HR [Let:Tam] = 0.81; 95% CI, 0.57 to 1.15; interaction P = .09). CONCLUSION: Ki-67 LI is confirmed as a prognostic factor in this study. High Ki-67 LI levels may identify a patient group that particularly benefits from initial Let adjuvant therapy.