141 resultados para Nerve injury-induced protein (Ninjurin)-1
Resumo:
In response to pathological stresses, the heart undergoes a remodelling process associated with cardiac hypertrophy. Since sustained hypertrophy can progress to heart failure, there is an intense investigation about the intracellular signalling pathways that control cardiomyocyte growth. Accumulating evidence has demonstrated that most stimuli known to initiate pathological changes associated with the development of cardiac hypertrophy activate G protein-coupled receptors (GPCRs) including the αl-adrenergic- (αl-AR), Angiotensin II- (AT-R) and endothelin-1- (ET-R) receptors. In this context, we have previously identified a cardiac scaffolding protein, called AKAP-Lbc (Α-kinase anchoring protein), with an intrinsic Rho specific guanine nucleotide exchange factor activity, that plays a key role in integrating and transducing hypertrophic signals initiated by these GPCRs (Appert-Collin, Cotecchia et al. 2007). Activated RhoA controls the transcriptional activation of genes involved in cardiomyocyte hypertrophy through signalling pathways that remain to be characterized. Here, we identified the nuclear factor-Kappa Β (NF-κΒ) activating kinase ΙΚΚβ as a novel AKAP-Lbc interacting protein. This raises the hypothesis that AKAP-Lbc might promote cardiomyocyte growth by maintaining a signalling complex that promotes the activation of the pro-hypertrophic transcription factor NF-κΒ. In fact, the activation of NF- κΒ-dependent transcription has been detected in numerous disease contexts, including hypertrophy, ischemia/reperfusion injury, myocardial infarction, allograft rejection, myocarditis, apoptosis, and more (Hall, Hasday et al. 2006). While it is known by more than a decade that NF-κΒ is a critical mediator of cardiac hypertrophy, it is currently poorly understood how pro-hypertrophic signals controlling NF-κΒ transcriptional activity are integrated and coordinated within cardiomyocytes. In this study, we show that AKAP-Lbc and ΙΚΚβ form a transduction complex in cardiomyocytes that couples activation of αl-ARs to NF-κB-mediated transcriptional reprogramming events associated with cardiomyocyte hypertrophy. In particular, we can show that activation of ΙΚΚβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukine-6 (IL-6), which, in turn, enhances foetal gene expression. These findings indicate that the AKAP-Lbc/ΙΚΚβ complex is critical for selectively directing catecholamine signals to the induction of cardiomyocyte hypertrophy.
Resumo:
The mitogen-activated protein kinases (MAPKs) pathways are highly organized signaling systems that transduce extracellular signals into a variety of intracellular responses. In this context, it is currently poorly understood how kinases constituting these signaling cascades are assembled and activated in response to receptor stimulation to generate specific cellular responses. Here, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critically involved in the activation of the p38α MAPK downstream of α(1b)-adrenergic receptors (α(1b)-ARs). Our results indicate that AKAP-Lbc can assemble a novel transduction complex containing the RhoA effector PKNα, MLTK, MKK3, and p38α, which integrates signals from α(1b)-ARs to promote RhoA-dependent activation of p38α. In particular, silencing of AKAP-Lbc expression or disrupting the formation of the AKAP-Lbc·p38α signaling complex specifically reduces α(1)-AR-mediated p38α activation without affecting receptor-mediated activation of other MAPK pathways. These findings provide a novel mechanistic hypothesis explaining how assembly of macromolecular complexes can specify MAPK signaling downstream of α(1)-ARs.
Resumo:
Lipin-1 regulates lipid metabolism by way of its function as an enzyme in the triglyceride synthesis pathway and as a transcriptional coregulatory protein and is highly up-regulated in alcoholic fatty liver disease. In the present study, using a liver-specific lipin-1-deficient (lipin-1LKO) mouse model, we aimed to investigate the functional role of lipin-1 in the development of alcoholic steatohepatitis and explore the underlying mechanisms. Alcoholic liver injury was achieved by pair feeding wild-type and lipin-1LKO mice with modified Lieber-DeCarli ethanol-containing low-fat diets for 4 weeks. Surprisingly, chronically ethanol-fed lipin-1LKO mice showed markedly greater hepatic triglyceride and cholesterol accumulation, and augmented elevation of serum liver enzymes accompanied by increased hepatic proinflammatory cytokine expression. Our studies further revealed that hepatic removal of lipin-1 in mice augmented ethanol-induced impairment of hepatic fatty acid oxidation and lipoprotein production, likely by way of deactivation of peroxisome proliferator-activated receptor γ coactivator-1alpha, a prominent transcriptional regulator of lipid metabolism. Conclusions: Liver-specific lipin-1 deficiency in mice exacerbates the development and progression of experimental alcohol-induced steatohepatitis. Pharmacological or nutritional modulation of hepatic lipin-1 may be beneficial for the prevention or treatment of human alcoholic fatty liver disease. (Hepatology 2013; 58:1953-1963).
Resumo:
Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.
Resumo:
OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.
Resumo:
BACKGROUND & AIMS: Clostridium difficile-associated disease (CDAD) is the leading cause of nosocomial diarrhea in the United States. C difficile toxins TcdA and TcdB breach the intestinal barrier and trigger mucosal inflammation and intestinal damage. The inflammasome is an intracellular danger sensor of the innate immune system. In the present study, we hypothesize that TcdA and TcdB trigger inflammasome-dependent interleukin (IL)-1beta production, which contributes to the pathogenesis of CDAD. METHODS: Macrophages exposed to TcdA and TcdB were assessed for IL-1beta production, an indication of inflammasome activation. Macrophages deficient in components of the inflammasome were also assessed. Truncated/mutated forms of TcdB were assessed for their ability to activate the inflammasome. The role of inflammasome signaling in vivo was assessed in ASC-deficient and IL-1 receptor antagonist-treated mice. RESULTS: TcdA and TcdB triggered inflammasome activation and IL-1beta secretion in macrophages and human mucosal biopsy specimens. Deletion of Nlrp3 decreased, whereas deletion of ASC completely abolished, toxin-induced IL-1beta release. TcdB-induced IL-1beta release required recognition of the full-length toxin but not its enzymatic function. In vivo, deletion of ASC significantly reduced toxin-induced inflammation and damage, an effect that was mimicked by pretreatment with the IL-1 receptor antagonist anakinra. CONCLUSIONS: TcdA and TcdB trigger IL-1beta release by activating an ASC-containing inflammasome, a response that contributes to toxin-induced inflammation and damage in vivo. Pretreating mice with the IL-1 receptor antagonist anakinra afforded the same level of protection that was observed in ASC-/- mice. These data suggest that targeting inflammasome or IL-1beta signaling may represent new therapeutic targets in the treatment of CDAD.