458 resultados para Membrane Antigen
Resumo:
Treatment of Escherichia coli with non-lethal doses of heat or benzyl alcohol (BA) causes transient membrane fluidization and permeabilization, and induces the rapid transcription of heat-shock genes in a sigma32-dependent manner. This early response is followed by a rapid adaptation (priming) of the cells to otherwise lethal elevated temperature, in strong correlation with an observed remodeling of the composition and alkyl chain unsaturation of membrane lipids. The acquisition of cellular thermotolerance in BA-primed cells is unrelated to protein denaturation and is not accompanied by the formation of major heat-shock proteins, such as GroEL and DnaK. This suggests that the rapid remodeling of membrane composition is sufficient for the short-term bacterial thermotolerance.
Resumo:
Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.
Resumo:
The circumsporozoite protein (CSP), a major antigen of Plasmodium falciparum, was expressed in the slime mold Dictyostelium discoideum. Fusion of the parasite protein to a leader peptide derived from Dictyostelium contact site A was essential for expression. The natural parasite surface antigen, however, was not detected at the slime mold cell surface as expected but retained intracellularly. Removal of the last 23 amino acids resulted in secretion of CSP, suggesting that the C-terminal segment of the CSP, rather than an ectoplasmic domain, was responsible for retention. Cell surface expression was obtained when the CSP C-terminal segment was replaced by the D. discoideum contact site A glycosyl phosphatidylinositol anchor signal sequence. Mice were immunized with Dictyostelium cells harboring CSP at their surface. The raised antibodies recognized two different regions of the CSP. Anti-sporozoite titers of these sera were equivalent to anti-peptide titers detected by enzyme-linked immunosorbent assay. Thus, cell surface targeting of antigens can be obtained in Dictyostelium, generating sporozoite-like cells having potentials for vaccination, diagnostic tests, or basic studies involving parasite cell surface proteins.
Resumo:
Autophagy is a key regulator of cellular homeostasis that can be activated by pathogen-associated molecules and recently has been shown to influence IL-1β secretion by macrophages. However, the mechanisms behind this are unclear. Here, we describe a novel role for autophagy in regulating the production of IL-1β in antigen-presenting cells. After treatment of macrophages with Toll-like receptor ligands, pro-IL-1β was specifically sequestered into autophagosomes, whereas further activation of autophagy with rapamycin induced the degradation of pro-IL-1β and blocked secretion of the mature cytokine. Inhibition of autophagy promoted the processing and secretion of IL-1β by antigen-presenting cells in an NLRP3- and TRIF-dependent manner. This effect was reduced by inhibition of reactive oxygen species but was independent of NOX2. Induction of autophagy in mice in vivo with rapamycin reduced serum levels of IL-1β in response to challenge with LPS. These data demonstrate that autophagy controls the production of IL-1β through at least two separate mechanisms: by targeting pro-IL-1β for lysosomal degradation and by regulating activation of the NLRP3 inflammasome.
Resumo:
The ability of vaccines to induce memory cytotoxic T-cell responses in the lung is crucial in stemming and treating pulmonary diseases caused by viruses and bacteria. However, most approaches to subunit vaccines produce primarily humoral and only to a lesser extent cellular immune responses. We developed a nanoparticle (NP)-based carrier that, upon delivery to the lung, specifically targets pulmonary dendritic cells, thus enhancing antigen uptake and transport to the draining lymph node; antigen coupling via a disulfide link promotes highly efficient cross-presentation after uptake, inducing potent protective mucosal and systemic CD8(+) T-cell immunity. Pulmonary immunization with NP-conjugated ovalbumin (NP-ova) with CpG induced a threefold enhancement of splenic antigen-specific CD8(+) T cells displaying increased CD107a expression and IFN-γ production compared with immunization with soluble (i.e., unconjugated) ova with CpG. This enhanced response was accompanied by a potent Th17 cytokine profile in CD4(+) T cells. After 50 d, NP-ova and CpG also led to substantial enhancements in memory CD8(+) T-cell effector functions. Importantly, pulmonary vaccination with NP-ova and CpG induced as much as 10-fold increased frequencies of antigen-specific effector CD8(+) T cells to the lung and completely protected mice from morbidity following influenza-ova infection. Here, we highlight recruitment to the lung of a long-lasting pool of protective effector memory cytotoxic T-cells by our disulfide-linked antigen-conjugated NP formulation. These results suggest the reduction-reversible NP system is a highly promising platform for vaccines specifically targeting intracellular pathogens infecting the lung.
Resumo:
This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.
Resumo:
Anti-idiotype antibodies can mimic the conformational epitopes of the original antigen and act as antigen substitutes for vaccination and/or serological purposes. To investigate this possibility concerning the tumor marker carcinoembryonic antigen (CEA), BALB/c mice were immunized with the previously described anti-CEA monoclonal antibody (MAb) 5.D11 (AB1). After cell fusion, 15 stable cloned cell lines secreting anti-Ids (AB2) were obtained. Selected MAbs gave various degrees of inhibition (up to 100%) of the binding of 125I-labeled CEA to MAb 5.D11. Absence of reactivity of anti-Id MAbs with normal mouse IgG was first demonstrated by the fact that anti-Id MAbs were not absorbed by passage through a mouse IgG column, and second because they bound specifically to non-reduced MAb 5.D11 on Western blots. Anti-5.D11 MAbs did not inhibit binding to CEA of MAb 10.B9, another anti-CEA antibody obtained in the same fusion as 5.D11, or that of several anti-CEA MAbs reported in an international workshop, with the exception of two other anti-CEA MAbs, both directed against the GOLD IV epitope. When applied to an Id-anti-Id competitive radioimmunoassay, a sensitivity of 2 ng/ml of CEA was obtained, which is sufficient for monitoring circulating CEA in carcinoma patients. To verify that the anti-Id MAbs have the potential to be used as CEA vaccines, syngeneic BALB/c mice were immunized with these MAbs (AB2). Sera from immunized mice were demonstrated to contain AB3 antibodies recognizing the original antigen, CEA, both in enzyme immunoassay and by immunoperoxidase staining of human colon carcinoma. These results open the perspective of vaccination against colorectal carcinoma through the use of anti-idiotype antibodies as antigen substitutes.
Resumo:
Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.
Resumo:
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.
Resumo:
After superantigen challenge a significant proportion of superantigen-reactive T cells remain undivided. We provide evidence that the lymphoid environment limits T cell proliferation in the secondary lymphoid organs when the frequency of superantigen reactive T cells is unusually high. We monitored T cell proliferation and the percentage of undivided cells when the frequency of superantigen-reactive T cells was low (1%), intermediate (15%) or high (30-100%) by transferring fluorescently labeled cells into different recipients. When the frequency was low, practically all the reactive T cells entered cell cycle and proliferated maximally. At intermediate frequencies a large proportion of reactive T cells did not enter cell cycle and the whole population divided less. A further increase in reactive T cells did not alter the percentage of undivided cells but induced a further decrease in the number of cell divisions. Interestingly, the observations made with superantigens were confirmed with peptide antigen and TCR-transgenic mice. Moreover, in vivo and in vitro data suggest that dendritic cells are the most likely candidates in limiting T cell proliferation in the lymphoid environment. In conclusion, we show that the availability of APC in the lymphoid environment can quantitatively limit T cell priming.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.
Resumo:
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.
Resumo:
Purpose/Objective: Protective CD8+ T cell responses rely on TCRdependent recognition of immunogenic peptides presented by MHC I. Cytolytic T lymphocytes directed against self/tumor antigens express TCRs of lower affinity/avidity than pathogen-derived T lymphocytes and elicit less protective immune responses due to mechanisms of central and peripheral tolerance. Anti-tumor T cell reactivity can be improved by increasing the TCR-pMHC affinity within physiological limits, while intriguingly further increase in the supraphysiological range (KD < 1 lM) leads to drastic functional declines. We aim at identifying the molecular mechanisms underlying the loss of T cell responsiveness associated with supraphysiological TCRpMHC affinities in order to improve effectiveness of TCR-engineered T cells used in adoptive cell transfer (ACT) cancer immunotherapy. Materials and methods: Using a panel of human CD8+ T cells engineered with TCRs of incremental affinity for the HLA-A2-resticted tumor cancer testis antigen NY-ESO-1, we performed comparative gene expression microarray and TCR-mediated signaling analysis together with membrane receptors level analysis. Results: As compared to cells expressing TCR affinities generating optimal function (KD from 5to 1 lM), those with supraphysiological affinity (KD from 1 lM to 15 nM) had an overall reduced expression of genes implied in signaling, cell activation and proliferation, and showed impaired proximal and distal TCR signaling capacity. This correlated with a decline in surface expression of CD8b, CD28 and activatory TNFR superfamily members. Importantly, expression of inhibitory receptor PD-1 and SHP-1 phosphatase was upregulated in a TCR affinity-dependent manner. Consequently, PD-L1 and SHP-1 blockade restored the function of T cells with high TCRs affinity. Moreover, SHP-1 inhibition also augmented functional efficacy of T cells with TCRs of optimal affinity. Conclusions: Our findings indicate that TCR affinity-associated regulatory mechanisms control T cells responsiveness at various levels to limit potential auto-reactive cytotoxic effects. They also support the development of ACT therapies combined with blockade of inhibitory molecules such as SHP-1 to enhance effectiveness of T cell immunotherapy.
Resumo:
Carcinoembryonic antigen (CEA) is a well-known tumor marker, consisting of a single heavily glycosylated polypeptide chain (mol. wt 200 kD), bound to the cell surface by a phosphatidylinositol-glycan anchor. The hydrophobic domain, encoded by the 3' end of the open reading frame of the CEA gene is not present in the mature protein. This domain is assumed to play an important role in the targeting and attachment of CEA to the cell surface. To verify this hypothesis, a recombinant CEA cDNA lacking the 78 b.p. of the 3' region, encoding the 26 a.a. hydrophobic domain, was prepared in a Rc/CMV expression vector containing a neomycin resistance gene. The construct was transfected by the calcium phosphate technique into CEA-negative human and rat colon carcinoma cell lines. Geneticin-resistant transfectants were screened for the presence of CEA in the supernatant and positive clones were isolated. As determined by ELISA, up to 13 micrograms of recombinant CEA per 10(6) cells was secreted within 72 hr by the human transfected cells and about 1 microgram by the rat cells. For comparison, two human carcinoma cell lines, CO112 and LS174T, selected for high CEA expression, shed about 45 and 128 ng per 10(6) cells within 72 hr, respectively. Western blot analysis showed that the size of the recombinant CEA secreted by the transfected human cells is identical to that of reference CEA purified from human colon carcinomas metastases (about 200 kD). The recombinant CEA synthesized by the transfected rat carcinoma cells has a smaller size (about 144 kD, possibly due to incomplete glycosylation), as has already been observed for CEA produced by rat colon carcinoma cells transfected with full-length CEA cDNA. The 100-fold increase in secretion of rCEA encoded by truncated CEA cDNA transfected in human cells confirms the essential role of this domain in the targeting and anchoring of the glycoprotein. These results suggest a new approach for the in vitro production of large amounts of CEA needed in research laboratories and for immunoassay kits.
Resumo:
Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.