182 resultados para MIGRATING CELLS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A particular feature of gammadelta T cell biology is that cells expressing T cell receptor (TCR) using specific Vgamma/Vdelta segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all gammadelta T cells express Vgamma3/Vdelta1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vgamma3+ thymocytes. The role of gammadelta TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR delta chain (Vdelta6.3-Ddelta1-Ddelta2-Jdelta1-Cdelta), which can pair with Vgamma3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vdelta6.3Tg mice DETC were present and virtually all of them express Vdelta6.3. However, DETC were absent in TCR-delta(-/-) Vdelta6.3Tg mice, despite the fact that Vdelta6.3Tg gammadelta T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vdelta6.3Tg mice, a high proportion of in-frame Vdelta1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-delta (most probably Vdelta1) was required for the development of Vdelta6.3+ epidermal gammadelta T cells. Collectively our data demonstrate that TCR specificity is essential for the development of gammadelta T cells in the epidermis. Moreover, they show that the TCR-delta locus is not allelically excluded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcal enterotoxin B (SEB) is a bacterial superantigen (SAg) that predominantly interacts with V(beta)8+ T cells. In vivo treatment of mice with SEB leads to an initial increase in the percentage of V(beta)8+ T cells, followed by a decrease in the numbers of these cells, eventually reaching lower levels than those found before treatment with the SAg. This decrease is due to apoptosis of the SEB-responding cells. In the present study, we use the distinct light scattering characteristics of apoptotic cells to characterize T cells that are being deleted in response to SEB in vivo. We show that dying, SEB-reactive T cells express high levels of Fas and Fas ligand (Fas-L), which are implicated in apoptotic cell death. In addition, the B cell marker B220 is upregulated on apoptotic cells. Moreover, we show that the generation of cells with an apoptotic phenotype is severely impaired in response to SEB in functional Fas-L-deficient mutant gld mice, confirming the role of the Fas pathway in SAg mediated peripheral deletion in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of allergic asthma is a complex process involving immune, neuronal and tissue cells. In the lung, Clara cells represent a major part of the "immunomodulatory barrier" of the airway epithelium. To understand the contribution of these cells to the inflammatory outcome of asthma, disease development was assessed using an adjuvant-free ovalbumin model. Mice were sensitised with subcutaneous injections of 10 μg endotoxin-free ovalbumin in conjunction with naphthalene-induced Clara cell depletion. Clara epithelial cell depletion in the lung strongly reduced eosinophil influx, which correlated with decreased eotaxin levels and, moreover, diminished the T-helper cell type 2 inflammatory response, including interleukin (IL)-4, IL-5 and IL-13. In contrast, airway hyperresponsiveness was increased. Further investigation revealed Clara cells as the principal source of eotaxin in the lung. These findings are the first to show that Clara airway epithelial cells substantially contribute to the infiltration of eotaxin-responsive CCR3+ immune cells and augment the allergic immune response in the lung. The present study identifies Clara cells as a potential therapeutic target in inflammatory lung diseases such as allergic asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten oxidosqualene cyclase inhibitors with high efficacy as cholesterol-lowering agents and of different chemical structure classes were evaluated as potential anticancer agents against human cancer cells from various tissue origins and nontumoral human-brain-derived endothelial cells. Inhibition of cancer cell growth was demonstrated at micromolar concentrations, comparable to the concentrations of statins necessary for antitumor effect. Human glioblastoma cells were among the most sensitive cells. These compounds were also able to decrease the proliferation of angiogenic brain-derived endothelial cells, as a model of tumor-induced neovasculation. Additive effects in human glioblastoma cells were also demonstrated for oxidosqualene cyclase inhibitors in combination with atorvastatin while maintaining selectivity against endothelial cells. Thus, not only statins targeting the 3-hydroxy-3-methylglutaryl coenzyme A reductase but also inhibitors of oxidosqualene cyclase decrease tumor growth, suggesting new therapeutic opportunities of combined anti-cholesterol agents for dual treatment of glioblastoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer's patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c(+)CD11b(+)CD8(-) dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer's Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-beta, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct naïve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT : The whisker-to-barrel pathway of rodents is formed by a series of somatotopic projections from the mystacial whisker follicles to the layer IV of the primary somatosensory cortex such that each follicle corresponds to a cluster of cortical neurons called barrel. Barrels are present in layer IV but form part of functional columns that comprise the entire depth of the somatosensory cortex. Interestingly, the cortex of the barrelless mouse strain (BRL) is organized such a manner that thalamocortical afferents do not remodel their projections in layer IV and barrels fail to appear. Nevertheless, functionally, a columnar organization persists, indicating that functional columns are not only provided by thalamocortical projections and layer IV cells. Since in the visual cortex of cats, layer VI cells contribute to the response properties of layer IV neurons, we wonder whether layer VI pyramidal cells could contribute to the columnar organization of the primary somatosensory cortex of mice. To address -this question, we morphologically analyzed the distribution of intracortical axon collaterals of layer VI neurons after in-vivo juxtacellular injections of biocytin in the C2 barrel column. Injected hemispheres were tangentially serial cut and intracortical collaterals of individual layer VI neurons were reconstructed at the light microscopic level. The position of axonal boutons was recorded to evaluate the distribution of presumed synaptic contacts. In normal (NOR) mice, cluster analysis shows that layer VI pyramidal cells can be classified in four statistically different clusters of neurons. Moreover, we assume that two classes are formed by cortico-cortical neurons and two classes are formed by cortico-thalamic neurons. Looking at the direction of the main axon in the white matter, we noticed that its orientation correlates perfectly with the type of neuron: cortico-cortical neurons send main axon medially whereas cortico-thalamic neurons send main axon laterally. Performing the same study in the BRL strain, we showed that the BRL mutation affects layer VI pyramidal cells tangentially and radially: the effects of the mutation are illustrated by a significant decrease of the index of colurnnarization and a significant decrease of percentage of boutons in granular and supragranular layers comparing to NOR neurons. In spite of these differences, the same four classes of layer VI neurons have been found in BRL mice. Using a tangential analysis of the boutons distribution, we showed that putative synapses are distributed mainly in the C2 barrel column. This was observed for each layer, type of neuron, cluster or strain, indicating that layer VI pyramidal cells could participate to the functional columnar organization of the barrel cortex. To determine post-synaptic partners of layer VI neurons in layer IV, we conducted an ultrastructural analysis of layer VI-to-IV contacts. We showed that synapses principally occur on spines and spiny dendritic shafts, supposed to belong to excitatory neurons. We furthermore showed that pre-synaptic elements are significantly different between en passant and terminaux contacts, which support hypothesis that terminaux boutons should show longer duration of facilitation than en passant boutons. RÉSUMÉ : Le «whisker-to-barrel pathway» des rongeurs est caractérisé par une série de projections somatotopiques depuis les follicules des moustaches ('whiskers') jusqu'à la couche IV de l'aire somatosensorielle primaire, de telle façon que chaque follicule corresponde à un groupe de neurones corticaux appelés tonneaux (`barrels'). Les tonneaux sont seulement présents en couche IV mais font partie de colonnes fonctionnelles qui s'étendent sur toute la profondeur du cortex somatosensoriel. Chez les souris mutantes barrelless (BRL), le cortex somatosensoriel est organisé de façon telle que lés afférences thalamocorticales ne remodellent pas leurs projections en couche IV et que les tonneaux n'apparaissent pas. Fonctionnellement, pourtant, une organisation en colonnes persiste, ce qui indique que les colonnes fonctionnelles ne sont pas uniquement produites par les projections thalamocorticales et par les cellules de la couche IV. Puisque les cellules de la couche VI contribuent à influencer les réponses des cellules de la couche IV dans le cortex visuel du chat, nous nous sommes demandé si ces cellules ne pourraient pas aussi contribuer à l'organisation en colonnes du cortex somatosensoriel primaire de la souris. Pour répondre à cette question, nous avons analysé de façon morphologique la distribution intracorticale des collatéraux axonaux de neurones de la couche VI. Suite à des injections juxtacellulaires de biocytine in-vivo dans la colonne C2, les hémisphères cérébraux ont été tangentiellement coupés en série et les collatéraux intracorticaux des neurones de la couche VI ont été reconstruits en microscopie optique. La position des boutons axonaux a aussi été enregistrée pour évaluer la distribution des contacts synpptiques potentiels. Chez les souris NOR, une analyse multivariée montre que les cellules pyramidales de la couche VI sont distribuées en quatre classes. Deux de ces classes sont probablement formées de neurons cortico-corticaux, alors que les deux autres sont probablement formées de neurones corticothalamiques. En observant la direction de l'axone principal dans la matière blanche, nous avons noté que son orientation est parfaitement corrélée avec le type supposé de neurone : les neurones corticocorticaux envoient leurs axones principaux médiallement, alors que les neurons cortico-thalamiques envoient leurs axones principaux latéralement. En menant la même étude chez les souris BRL, nous avons montré que la mutation affecte les cellules pyramidales de la couche VI de façon tangentielle, mais aussi radiaire : les effets de 1a mutation se traduisent par une diminution significative de l'index de « columnarization » et de la connectivité en couches granulaire et supragranulaire. Malgré ces différences, les quatre mêmes classes de neurones ont été retrouvées. En utilisant une analyse tangentielle de la distribution des boutons, nous avons montré que les synapses potentielles sont distribuées principalement dans la colonne C2. Cette observation a été faite dans chaque couche, chaque type de neurones, chaque classe de neurones et chaque souche de souris, indicant que les cellules de la couche VI participent certainement à l'organisation en colonne du cortex somatosensoriel. Pour déterminer les partenaires post-synaptiques des cellules de la couche VI en couche IV, nous avons conduit une analyse ultrastructurelle de ces contacts. Nous avons montré que les synapses interviennent principalement sur les épines et sur les dendrites supposés appartenir à des cellules excitatrices. Nous avons aussi montré que les éléments pré-synaptiques de ces synapses sont significativement differents selon le type de bouton, en passant ou terminal, ce qui supporte l'hypothèse que les boutons terminaux seraient capables d'une plus longue facilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diruthenium tetracarbonyl complexes of the type [Ru2(CO)4(l2-g2-O2CR)2L2] containing a Ru-Ru backbone with four equatorial carbonyl ligands, two carboxylato bridges, and two axial two-electron ligands in a sawhorse-like geometry have been synthesized with porphyrin-derived substituents in the axial ligands [1: R is CH3, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin], in the bridging carboxylato ligands [2: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is PPh3; 3: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 1,3,5-triaza-7-phosphatricyclo [3.3.1.1]decane], or in both positions [4: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin]. Compounds 1-3 were assessed on different types of human cancer cells and normal cells. Their uptake by cells was quantified by fluorescence and checked by fluorescence microscopy. These compounds were taken up by human HeLa cervix and A2780 and Ovcar ovarian carcinoma cells but not by normal cells and other cancer cell lines (A549 pulmonary, Me300 melanoma, PC3 and LnCap prostate, KB head and neck, MDAMB231 and MCF7 breast, or HT29 colon cancer cells). The compounds demonstrated no cytotoxicity in the absence of laser irradiation but exhibited good phototoxicities in HeLa and A2780 cells when exposed to laser light at 652 nm, displaying an LD50 between 1.5 and 6.5 J/cm2 in these two cell lines and more than 15 J/cm2 for the others. Thus, these types of porphyric compound present specificity for cancer cell lines of the female reproductive system and not for normal cells; thus being promising new organometallic photosensitizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A woman's risk of breast cancer is strongly affected by her reproductive history. The hormonal milieu is also a key determinant of the course of the disease. Combining mouse genetics with tissue recombination techniques, we have established that the female reproductive hormones, estrogens, progesterone, and prolactin, act sequentially on the mammary epithelium to trigger distinct developmental steps. The hormones impinge directly on a subset of luminal mammary epithelial cells that express the respective hormone receptors and act as sensor cells translating and amplifying systemic signals into local stimuli. Local signaling is stage and age specific. During puberty, estrogens promote proliferation using the EGF family member, amphiregulin, as essential paracrine mediator. In adulthood, progesterone, rather than estrogen, is the major inducer of stem cell activation and cell proliferation of the mammary epithelium. Hormonal signaling modulates crucial developmental pathways that impinge on mammary stem cell populations, while Notch signaling, by inhibiting p63, is central to mammary cell fate determination. Cell proliferation occurs in two waves. The first results from direct stimulation of the small fraction of hormone receptor positive cells. It is followed by a second wave of progesterone-induced proliferation involving mostly hormone receptor negative cells, in which RANKL is a key mediator. A model in which repeated activation of paracrine signaling by progesterone with resulting stem cell activation promotes breast carcinogenesis is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of natural T cell responses against pathogens or tumors, as well as the assessment of new immunotherapy strategies aimed at boosting these responses, requires increasingly precise ex vivo analysis of blood samples. For practical reasons, studies are often performed using purified PBMC samples, usually cryopreserved. Here, we report on FACS analyses of peripheral blood T cells, performed by direct antibody staining of non-purified total blood. For comparison, fresh PBMC, purified by Ficoll, were analysed. Our results show that the latter method can induce a bias in subpopulation distribution, in particular of CD8+ T cells, and sometimes lead to inaccurate measurement of antigen specific CD8+ T cell responses. Direct analysis of total blood can be applied to longitudinal immuno-monitoring of T cell-based therapy. While the need to purify and cryopreserve PBMC for subsequent studies is obvious, the use of whole blood has the advantage of providing unbiased results and only small amounts of blood are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.