141 resultados para Loyalty approach
Resumo:
In hyperdiploid acute lymphoblastic leukaemia (ALL), the simultaneous occurrence of specific aneuploidies confers a more favourable outcome than hyperdiploidy alone. Interphase (I) FISH complements conventional cytogenetics (CC) through its sensitivity and ability to detect chromosome aberrations in non-dividing cells. To overcome the limits of manual I-FISH, we developed an automated four-colour I-FISH approach and assessed its ability to detect concurrent aneuploidies in ALL. I-FISH was performed using centromeric probes for chromosomes 4, 6, 10 and 17. Parameters established for automatic nucleus selection and signal detection were evaluated (3 controls). Cut-off values were determined (10 controls, 1000 nuclei/case). Combinations of aneuploidies were considered relevant when each aneuploidy was individually significant. Results obtained in 10 ALL patients (1500 nuclei/patient) were compared with those by CC. Various combinations of aneuploidies were identified. All clones detected by CC were observed by I-FISH. I-FISH revealed numerous additional abnormal clones, ranging between 0.1% and 31.6%, based on the large number of nuclei evaluated. Four-colour automated I-FISH permits the identification of concurrent aneuploidies of prognostic significance in hyperdiploid ALL. Large numbers of cells can be analysed rapidly by this method. Owing to its high sensitivity, the method provides a powerful tool for the detection of small abnormal clones at diagnosis and during follow up. Compared to CC, it generates a more detailed cytogenetic picture, the biological and clinical significance of which merits further evaluation. Once optimised for a given set of probes, the system can be easily adapted for other probe combinations.
Resumo:
We present an integrated work based on calcareous nannofossil and benthic foraminiferal assemblages, and geochemical analyses of two Upper Pliensbachian-Lower Toarcian sections located in the central-South France. The studied sections, Tournadous and Saint-Paul-des-Fonts, represent the proximal and the distal part, respectively, of the Jurassic Causses Basin, one of the small, partly enclosed basins belonging to the epicontinental shelf of the NW Tethys. At the transition from Late Pliensbachian to Early Toarcian, the Causses Basin recorded an emersion in response to the global sea-level fall. Our data indicate severe environmental conditions of marine waters, including salinity decrease and anoxia development, occurring in the Early Toarcian. The acme of this deterioration coincides with the Early Toarcian Anoxic Event (T-OAE) but, due to the restricted nature of the basin. anoxia persisted until the end of the Early Toarcian. mainly in the deeper parts of the basin. The micronutrients and organic organic-matter fluxes were probably high during the entire studied time interval, as shown by nannofossil and foraminiferal assemblages. However, nannoplankton production drastically decreased during the T-OAE, as demonstrated by very low nannofossil fluxes, and only taxa tolerant to low-saline surface waters could thrive. At the same time, benthic foraminifers temporarily disappeared in response to sea-bottom anoxia. Our study demonstrates that environmental changes related to the T-OAE are well-recorded even in small, partly enclosed basins of NW Europe, like the Causses Basin. Within this area, the effects of global changes. like sea sea-level and temperature fluctuations, are modulated by local conditions mainly controlled by the morphology of the basin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.