144 resultados para Location Manufacturing Decision
Resumo:
Which neurons in the brain "decide" to initiate particular behaviors in response to sensory information? In this issue of Neuron, two papers (Kohatsu et al. and von Philipsborn et al.) identify candidates in the courtship circuitry of Drosophila. The activity of these neurons is both regulated by sex pheromones and necessary and sufficient to trigger male love song.
Resumo:
In decision making, speed-accuracy trade-offs are well known and often inevitable because accuracy depends on being well informed and gathering information takes time. However, trade-offs between speed and cohesion, that is the degree to which a group remains together as a single entity, as a result of their decision making, have been comparatively neglected. We combine theory and experimentation to show that in decision-making systems, speed-cohesion trade-offs are a natural complement to speed-accuracy trade-offs and are therefore of general importance. We then analyse the decision performance of 32 rock ant, Temnothorax albipennis, colonies in experiments in which accuracy of collective decision making was held constant, but time urgency varied. These experiments reveal for the first time an adaptive speed-cohesion trade-off in collective decision making and how this is achieved. In accord with different time constraints, colonies can decide quickly, at the cost of social unity, or they can decide slowly with much greater cohesion. We discuss the similarity between cohesion and the term precision as used in statistics and engineering. This emphasizes the generality of speed versus cohesion/precision trade-offs in decision making and decision implementation in other fields within animal behaviour such as sexually selected motor displays and even certain aspects of birdsong. We also suggest that speed versus precision trade-offs may occur when individuals within a group need to synchronize their activity, and in collective navigation, cooperative hunting and in certain escape behaviours.
Resumo:
A recent publication in this journal [Neumann et al., Forensic Sci. Int. 212 (2011) 32-46] presented the results of a field study that revealed the data provided by the fingermarks not processed in a forensic science laboratory. In their study, the authors were interested in the usefulness of this additional data in order to determine whether such fingermarks would have been worth submitting to the fingermark processing workflow. Taking these ideas as a starting point, this communication here places the fingermark in its context of a case brought before a court, and examines the question of processing or not processing a fingermark from a decision-theoretic point of view. The decision-theoretic framework presented provides an answer to this question in the form of a quantified expression of the expected value of information (EVOI) associated with the processed fingermark, which can then be compared with the cost of processing the mark.
Resumo:
Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.
Resumo:
The paper deals with the development and application of the methodology for automatic mapping of pollution/contamination data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve this problem. The automatic tuning of isotropic and an anisotropic GRNN model using cross-validation procedure is presented. Results are compared with k-nearest-neighbours interpolation algorithm using independent validation data set. Quality of mapping is controlled by the analysis of raw data and the residuals using variography. Maps of probabilities of exceeding a given decision level and ?thick? isoline visualization of the uncertainties are presented as examples of decision-oriented mapping. Real case study is based on mapping of radioactively contaminated territories.