139 resultados para Ligament cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer's patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c(+)CD11b(+)CD8(-) dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.