222 resultados para L function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Painful femoro-acetabular impingement symptoms localized in the groin in flexion, adduction and internal rotation can be explained either by a primary disease of the labrum often post-traumatic, and more frequently as part of femoro-acetabular primary or secondary dysmorphia. The kinematic of the normal hip joint depends of peri-acetabular structures, geometry of joints and possible pathologies that could contribute to modify either the geometry or the proprioceptive function. By combining and analyzing these parameters it is possible to describe a joint concept of centricity, an essential parameter for optimal functions of the joint. The concept of overload is explained as the inability of the hip to ensure its centricity during activities that could lead to the occurrence of any degenerative disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipoprotein(a) [Lp(a)] is an enigmatic lipoprotein particle present in the plasma from humans, great apes and hedgehogs. Plasma levels of Lp(a) vary widely between individuals and are largely determined by specific sequences within the gene encoding apo(a), the unique highly polymorphic glycoprotein attached to apoB of low density lipoprotein (LDL) to form Lp(a). Elevated plasma concentrations of LP(a) are associated with the premature development of atherosclerosis. A major goal of our laboratory is to better understand the metabolism of Lp(a) and its function in humans. We have identified unexpected and large variations in plasma Lp(a) levels during renal disease, HIV-infection and in sepsis. Moreover, we have observed an association between Lp(a) and Alzheimer disease. Taken together, our observations suggest that Lp(a) may constitute a novel target in our fight against cardiovascular and neurodegenerative disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate target mRNAs by binding to their 3' untranslated regions. There is growing evidence that microRNA-155 (miR155) modulates gene expression in various cell types of the immune system and is a prominent player in the regulation of innate and adaptive immune responses. To define the role of miR155 in dendritic cells (DCs) we performed a detailed analysis of its expression and function in human and mouse DCs. A strong increase in miR155 expression was found to be a general and evolutionarily conserved feature associated with the activation of DCs by diverse maturation stimuli in all DC subtypes tested. Analysis of miR155-deficient DCs demonstrated that miR155 induction is required for efficient DC maturation and is critical for the ability of DCs to promote antigen-specific T-cell activation. Expression-profiling studies performed with miR155(-/-) DCs and DCs overexpressing miR155, combined with functional assays, revealed that the mRNA encoding the transcription factor c-Fos is a direct target of miR155. Finally, all of the phenotypic and functional defects exhibited by miR155(-/-) DCs could be reproduced by deregulated c-Fos expression. These results indicate that silencing of c-Fos expression by miR155 is a conserved process that is required for DC maturation and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The caspase 8 inhibitor c-FLIP(L) can act in vitro as a molecular switch between cell death and growth signals transmitted by the death receptor Fas (CD95). To elucidate its function in vivo, transgenic mice were generated that overexpress c-FLIP(L) in the T-cell compartment (c-FLIP(L) Tg mice). As anticipated, FasL-induced apoptosis was inhibited in T cells from the c-FLIP(L) Tg mice. In contrast, activation-induced cell death of T cells in c-FLIP(L) Tg mice was unaffected, suggesting that this deletion process can proceed in the absence of active caspase 8. Accordingly, c-FLIP(L) Tg mice differed from Fas-deficient mice by showing no accumulation of B220(+) CD4(-) CD8(-) T cells. However, stimulation of T lymphocytes with suboptimal doses of anti-CD3 or antigen revealed increased proliferative responses in T cells from c-FLIP(L) Tg mice. Thus, a major role of c-FLIP(L) in vivo is the modulation of T-cell proliferation by decreasing the T-cell receptor signaling threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time = 122.43 hours +/-17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean +/- SD maximal voluntary contraction force declined significantly at Mid- (-13+/-17% and -10+/-16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (-24+/-13% and -26+/-19%, P<0.01) with alteration of the central activation ratio (-24+/-24% and -28+/-34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18+/-18% and PF: -20+/-15%, P<0.01) and peak twitch (KE: -33+/-12%, P<0.001 and PF: -19+/-14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719+/-3045 Ul.1), lactate dehydrogenase (1145+/-511 UI.L-1), C-Reactive Protein (13.1+/-7.5 mg.L-1) and myoglobin (449.3+/-338.2 microg.L-1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel CaV2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant CaV2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In adult, bone remodeling is a permanent process, reaching an annual turnover of about 10% of the skeleton. Bone remodeling requires the sequential and coordinated actions of the hematopoietic origin osteoclasts, to remove bone and the mesenchymal origin osteoblasts to replace it. An increased level of bone resorption is the primary cause of age-related bone loss often resulting in osteopenia, and is the major cause of osteoporosis.¦Peroxisome proliferator-activated receptors (PPARs), which are expressed in three isotypes, PPARa, PPARp and PPARy, are ligand-activated transcription factors that control many cellular and metabolic processes, more particularly linked to lipid metabolism. In bone, previous works has shown that PPARy inhibits osteogenesis by favoring adipogenesis from common mesenchymal progenitors. In addition, the pro-osteoclastogenesis activity of PPARy results in an increased bone resorption. Accordingly, treatment with PPARy agonist such as the anti-diabetic drug TZD causes bone loss and accumulation of marrow adiposity in mice as well as in postmenopausal women. The aim of the present thesis work was to elucidate the PPARs functions in bone physiology.¦The initial characterization of the PPARP" bone phenotype mainly revealed a decreased BMD. In vitro studies exploring the potency of mesenchymal stem cells to differentiate in osteoblast showed no differences depending on the genotype. However, we could demonstrate an effect of PPARp in partially inhibiting osteoclastogenesis. These results are further sustained by a study made in collaboration with the group of Dr Kronke, which showed an impressive protection against ovariectomy-generated bone loss when the females are treated with a PPARp agonist.¦Observations in PPARy null mice are more complex. The lab has recently been able to generate mice carrying a total deletion of PPARy. Intriguingly, the exploration of the bone phenotype of these mice revealed paradoxical findings. Whereas short bones such as vertebrae exhibit an elevated BMD as expected, long bones (tibia and femur) are clearly osteoporotic. According to their activity when set in culture, osteoblast differentiation normally occurs. Indeed the phenotype can be mainly attributed to a high density of osteoclasts in the cortical bone of PPARy null mice, associated to large bone resorption areas.¦Our explorations suggest a mechanism that involves regulatory processes linking osteoclastogenesis to adipogenesis, the latter being totally absent in PPARy null mice. Indeed, the lack of adipose tissue creates a favorable niche for osteoclastogenesis since conditioned medium made from differentiated adipocyte 3T3L1 inhibited osteoclastogenesis from both PPARy-/- and WT cells. Thus, adipokines deficiency in PPARy-/- mice contributes to de- repress osteoclastogenesis. Using specific blocking antibody, we further identified adiponectin as the major player among dozens of adipokines. Using flow cytometry assay, we explored the levels at which the osteoclastic commitment was perturbed in the bone marrow of PPARy-/- mice. Intriguingly, we observe a general decrease for hematopoietic stem cell and lineage progenitors but increased proportion of osteoclast progenitor in PPARy-/- bone marrow. The general decrease of HSC in the bone marrow is however largely compensated by an important extra-medullary hematopoeisis, taking place in the liver and in the spleen.¦These specific characteristics emphasize the key role of PPARy on a cross road of osteogenesis, adipogenesis and hematopoiesis/osteoclastogenesis. They underline the complexity of the bone marrow niche, and demonstrate the inter-dependance of different cell types in defining bone homeostasis, that may be overseen when experimental design single out pure cell populations.¦Chez l'adulte, même après la fin de la croissance, le renouvellement des os se poursuit et porte sur environ 10% de l'ensemble du squelette adulte, par année. Ce renouvellement implique à la fois des mécanismes séquentiels et coordonnés des ostéoclastes d'origine hématopoïetique, qui dégradent l'os, et des ostéoblastes d'origine mésenchymale, qui permettent la régénération de l'os. La perte en densité osseuse due à l'âge entraîne un fort niveau de résorption, conduisant souvent à une ostéopénie, elle-même cause de l'ostéoporose.¦Les trois isotypes PPAR (Peroxisome proliferator-activated receptor, PPARa, PPARp, et PPARy) sont des récepteurs nucléaires qui contrôlent de nombreux mécanismes cellulaires et métaboliques, plus particulièrement liés au métabolisme lipidique. Au niveau osseux, des travaux précédents ont montré que PPARy inhibe l'ostéoblastogenèse en favorisant la formation d'adipocytes à partir de la cellule progénitrice commune. De plus, l'activité pro- ostéoclastogénique de PPARy induit une résorption osseuse accrue. Condormément à ces observations, les patients diabétiques traités par les thiazolidinediones qui agissent sur PPARy, ont un risque accrue d'ostéoporose liée à une perte osseuse accrue et un accroissement de l'adiposité au niveau de la moelle osseuse. Dans ce contexte, l'objectif de mon travail de thèse a été d'élucider le rôle des PPAR dans la physiologie osseuse, en s'appuyant sur le phénotype des souris porteuses de mutation pour PPAR.¦La caractérisation initiale des os des souris porteuses d'une délétion de ΡΡΑΕφ a principalement révélé une diminution de la densité minérale osseuse (DMO). Alors que l'ostéogenèse n'est pas significativement altérée chez ces souris, l'ostéoclastogenèse est elle augmentée, suggérant un rôle modérateur de ce processus par ΡΡΑΕΙβ. Ces résultats sont par ailleurs soutenus par une étude menée par le groupe du Dr Krônke en collaboration avec notre groupe, et qui monte une protection très importante des souris traitées par un activateur de PPARP contre l'ostéoporose provoquée par l'ovariectomie.¦Les observations concernant PPARy donnent des résultats plus complexes. Le laboratoire a en effet été capable récemment de générer des souris portant une délétion totale de PPARy. Alors que les os courts chez ces souris présentent une augmentation de la DMO, comme attendu, les os longs sont clairement ostéoporotiques. Ce phénotype corrèle avec une densité élevée d'ostéoclastes dans l'os cortical de ces os longs. Deux processus semblent contribuer à ce phénotype. En premier lieu, nous démontrons qu'un milieu conditionné provenant de cultures de cellules 3T3-L1 différenciées en adipocytes contiennent une forte activité inhibitrice d'osteoclastogenesis. L'utilisation d'anticorps neutralisant permet d'identifier l'adiponectine comme l'un des facteurs principaux de cette inhibition. Les souris PPARy étant totalement dépourvues d'adipocytes et donc de tissu adipeux, la sécrétion locale d'adiponectine dans la moelle osseuse est donc également absente, entraînant une désinhibition de l'ostéoclastogenèse. En second lieu, des analyses par FACS révèle une proportion accrue des cellules progénitrices d'ostéoclastes dans la moelle osseuse. Cela s'accompagne par une diminution globale des cellules souches hématopoïétiques, qui est cependant largement compensée par une importante hématopoëise extra-médullaire, dans le foie comme dans la rate.¦L'ensemble de notre travail montre toute l'importance de PPARy au carrefour de l'ostéogenèse, adipogenèse, et hématopoëise/osteoclastogenèse. Il souligne la complexité de la niche que représente la moelle osseuse et démontre l'inter-dépendance des différents types cellulaires définissant l'homéostasie osseuse, complexité qui peut facilement être masqué lorsque le travail expérimental se concentre sur le comportement d'un type cellulaire donné.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G-protein coupled receptors such as GPR43.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efavirenz dosage adjustment in several patients with high EFV levels and presenting CNS toxicity have been successfully achieved in Switerland over the past seven years but many others have not beneficiated from dosage reduction owing to the lack of prospective studies evaluating the safety and clinical benefit of reduced dosage regimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Language processing abnormalities and executive difficulties are hallmark features of schizophrenia. The objective of this study is to assess the blood oxygenation level-dependent (BOLD) response at two different stages of the illness (i.e. comparison between adolescents and adults with schizophrenic symptoms) during a fluency task.Methods: BOLD responses during a covert verbal fluency task were compared between 11 psychotic adolescents with schizophrenic symptoms (mean age 16,9 years) and 14 adults with schizophrenia (mean age 33,4 years). fMRI data were analyzed with standard routine of spm5.Results: First, expected activation's network was found for both groups, separately. Secondly, adolescents showed greater activation in left rolandic opercule (BA 48), left angular (BA 39) and right hippocampus compared to adults. Thirdly, adults demonstrated greater activation in presupplementary motor area (BA 6) and in precentral area (BA 4) compared to adolescents.Conclusions: The adolescents seemed to recruit a verbal network (Broca and Wernicke) and memory abilities to perform a fluency task. In contrast, adults seemed to recruit more executive function abilities to perform a similar task. Despite the evolution of schizophrenia, which is known to have a deleterious influence on the prefrontal cortex development, adult patients seemed to be able to recruit such areas to perform a verbal fluency / executive function task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-Catenin signaling has recently been tied to the emergence of tolerogenic dendritic cells (DCs). In this article, we demonstrate a novel role for β-catenin in directing DC subset development through IFN regulatory factor 8 (IRF8) activation. We found that splenic DC precursors express β-catenin, and DCs from mice with CD11c-specific constitutive β-catenin activation upregulated IRF8 through targeting of the Irf8 promoter, leading to in vivo expansion of IRF8-dependent CD8α(+), plasmacytoid, and CD103(+)CD11b(-) DCs. β-Catenin-stabilized CD8α(+) DCs secreted elevated IL-12 upon in vitro microbial stimulation, and pharmacological β-catenin inhibition blocked this response in wild-type cells. Upon infections with Toxoplasma gondii and vaccinia virus, mice with stabilized DC β-catenin displayed abnormally high Th1 and CD8(+) T lymphocyte responses, respectively. Collectively, these results reveal a novel and unexpected function for β-catenin in programming DC differentiation toward subsets that orchestrate proinflammatory immunity to infection.