269 resultados para Kidney Papillary Necrosis
Resumo:
Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.
Resumo:
BACKGROUND: Chronic kidney disease (CKD) has been linked to higher heart failure (HF) risk. Anemia is a common consequence of CKD, and recent evidence suggests that anemia is a risk factor for HF. The purpose of this study was to examine among patients with HF, the association between CKD, anemia and inhospital mortality and early readmission. METHODS: We performed a retrospective cohort study in two Swiss university hospitals. Subjects were selected based the presence of ICD-10 HF codes in 1999. We recorded demographic characteristics and risk factors for HF. CKD was defined as a serum creatinine > or = 124 956;mol/L for women and > or = 133 micromol/L for men. The main outcome measures were inhospital mortality and thirty-day readmissions. RESULTS: Among 955 eligible patients hospitalized with heart failure, 23.0% had CKD. Twenty percent and 6.1% of individuals with and without CKD, respectively, died at the hospital (p < 0.0001). Overall, after adjustment for other patient factors, creatinine and hemoglobin were associated with an increased risk of death at the hospital, and hemoglobin was related to early readmission. CONCLUSION: Both CKD and anemia are frequent among older patients with heart failure and are predictors of adverse outcomes, independent of other known risk factors for heart failure.
Resumo:
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.
Resumo:
Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease the CYP2D6 activity in vitro and are present in a minority of patients with chronic hepatitis C infection. We investigated whether LKM-1 antibodies might reduce the CYP2D6 activity in vivo. All patients enrolled in the Swiss Hepatitis C Cohort Study and tested for LKM-1 antibodies were assessed (n = 1723): 10 eligible patients were matched with patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specific substrate using the dextromethorphan/dextrorphan metabolic ratio to classify patients into four activity phenotypes. All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with the CYP2D6 genotype in most LKM-negative patients, whereas only three LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was sixfold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, P = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies. In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies.
Resumo:
Progressive destruction of the insulin-producing beta cells in nonobese diabetic mice is observed after infiltration of the pancreas with lymphocytes [Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K. & Tochino, Y. (1980) Exp. Anim. (Tokyo) 29, 1-13]. We show that the genes for tumor necrosis factor alpha and granzyme A, a serine protease associated with cytoplasmic granules of cytotoxic cells, are expressed during the development of spontaneous diabetes mellitus in the nonobese diabetic mouse. Granzyme A-positive cells are found both in and surrounding the islets, implying induction prior to islet infiltration. Tumor necrosis factor alpha expression is exclusively observed in the intra-islet infiltrate, predominantly in lymphocytes adjacent to insulin-producing beta cells, the targets of the autoimmune destruction, implying that tumor necrosis factor alpha expression is induced locally--i.e., in the islet. A considerable portion of cells expressing tumor necrosis factor alpha appear to be CD4+ T cells. This T-cell subset was previously shown to be necessary for development of the disease. Thus, these findings may be important for understanding the pathogenesis of autoimmune diabetes mellitus and potentially also for that of other T-cell-mediated autoimmune diseases.
Resumo:
By using an in vitro model of antibody-mediated demyelination, we investigated the relationship between tumor necrosis factor-alpha (TNF-alpha) and heat shock protein (HSP) induction with respect to oligodendrocyte survival. Differentiated aggregate cultures of rat telencephalon were subjected to demyelination by exposure to antibodies against myelin oligodendrocyte glycoprotein (MOG) and complement. Cultures were analyzed 48 hr after exposure. Myelin basic protein (MBP) expression was greatly decreased, but no evidence was found for either necrosis or apoptosis. TNF-alpha was significantly up-regulated. It was localized predominantly in neurons and to a lesser extent in astrocytes and oligodendrocytes, and it was not detectable in microglial cells. Among the different HSPs examined, HSP32 and alphaB-crystallin were up-regulated; they may confer protection from oxidative stress and from apoptotic death, respectively. These results suggest that TNF-alpha, often regarded as a promoter of oligodendroglial death, could alternatively mediate a protective pathway through alphaB-crystallin up-regulation.
Resumo:
BACKGROUND: Gamma-glutamyltransferase (GGT) regulates apoptotic balance and promotes cancer progression and invasion. Higher pretherapeutic GGT serum levels have been associated with worse outcomes in various malignancies, but there are no data for renal cell carcinoma (RCC). METHODS: Pretherapeutic GGT serum levels and clinicopathological parameters were retrospectively evaluated in 921 consecutive RCC patients treated with nephrectomy at a single institution between 1998 and 2013. Gamma-glutamyltransferase was analysed as continuous and categorical variable. Associations with RCC-specific survival were assessed with Cox proportional hazards models. Discrimination was measured with the C-index. Decision-curve analysis was used to evaluate the clinical net benefit. The median postoperative follow-up was 45 months. RESULTS: Median pretherapeutic serum GGT level was 25 U l(-1). Gamma-glutamyltransferase levels increased with advancing T (P<0.001), N (P=0.006) and M stages (P<0.001), higher grades (P<0.001), and presence of tumour necrosis (P<0.001). An increase of GGT by 10 U l(-1) was associated with an increase in the risk of death from RCC by 4% (HR 1.04, P<0.001). Based on recursive partitioning-based survival tree analysis, we defined four prognostic categories of GGT: normal low (<17.5 U l(-1)), normal high (17.5 to <34.5 U l(-1)), elevated (34.5 to <181.5 U l(-1)), and highly elevated (⩾181.5 U l(-1)). In multivariable analyses that adjusted for the effect of standard features, both continuously and categorically coded GGT were independent prognostic factors. Adding GGT to a model that included standard features increased the discrimination by 0.9% to 1.8% and improved the clinical net benefit. CONCLUSIONS: Pretherapeutic serum GGT is a novel and independent prognostic factor for patients with RCC. Stratifying patients into prognostic subgroups according to GGT may be used for patient counselling, tailoring surveillance, individualised treatment planning, and clinical trial design.
Resumo:
B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.
Resumo:
Background: Symptom relief is the traditional treatment goal in Crohn's disease (CD). New goals including mucosal healing and bowel preservation are now achievable with tumor necrosis factor (TNF) antagonists. Infliximab and adalimumab are approved as second-line treatments for severe, active CD. Certolizumab pegol is approved only in the U.S. and Switzerland as second-line treatment for moderate-to-severe, active CD. Data from trials of infliximab suggest that high-risk patients and patients with active inflammation (CRP elevation and/or ileocolonic ulcers) may benefit from earlier use of this drug.
Resumo:
Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.
Resumo:
The development of new therapeutic options for renal tumors has lead to the need of a pretherapeutic diagnosis for an increasing proportion of patients presenting with a renal mass. This need is particularly important for a small, incidentally discovered renal mass (less than 4 cm) as it can be a benign lesion in a significant percentage of cases. Recent studies have shown that needle biopsy is an accurate and safe method allowing for a precise histopathological diagnosis of the mass in most cases. The aims of the biopsy are (1) to assess the benign or malignant nature of the lesion, (2) to assess the primary or secondary nature of the lesion, and (3), in case of a primary malignancy, to determine histological prognostic factors, such as the tumor type. This review, based on the most recent literature and our own experience, is intended to provide a practical approach to the diagnosis, relying on appropriate morphologic assessment and the use of immunohistochemistry.
Resumo:
Poor long-term adherence and persistence to drug therapy is universally recognized as one of the major clinical issues in the management of chronic diseases, and patients with renal diseases are also concerned by this important phenomenon. Chronic kidney disease (CKD) patients belong to the group of subjects with one of the highest burdens of daily pill intake with up to >20 pills per day depending on the severity of their disease. The purpose of the present review is to discuss the difficulties encountered by nephrologists in diagnosing and managing poor adherence and persistence in CKD patients including in patients receiving maintenance dialysis. Our review will also attempt to provide some clues and new perspectives on how drug adherence could actually be addressed and possibly improved. Working on drug adherence may look like a long and tedious path, but physicians and healthcare providers should always be aware that drug adherence is in general much lower than what they may think and that there are many ways to improve and support drug adherence and persistence so that renal patients obtain the full benefits of their treatments.
Resumo:
A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.
Resumo:
Following infection with the protozoan parasite Leishmania major, C57BL/6 mice develop a small lesion that heals spontaneously. Resistance to infection is associated with the development of CD4(+) Th1 cells producing gamma interferon (IFN-gamma) and tumor necrosis factor (TNF), which synergize in activating macrophages to their microbicidal state. We show here that C57BL/6 mice lacking both TNF and Fas ligand (FasL) (gld TNF(-/-) mice) infected with L. major neither resolved their lesions nor controlled Leishmania replication despite the development of a strong Th1 response. Comparable inducible nitric oxide synthase (iNOS) activities were detected in lesions of TNF(-/-), gld TNF(-/-), and gld mice, but only gld and gld TNF(-/-) mice failed to control parasite replication. Parasite numbers were high in gld mice and even more elevated in gld TNF(-/-) mice, suggesting that, in addition to iNOS, the Fas/FasL pathway is required for successful control of parasite replication and that TNF contributes only a small part to this process. Furthermore, FasL was shown to synergize with IFN-gamma for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Interestingly, TNF(-/-) mice maintained large lesion size throughout infection, despite being able to largely control parasite numbers. Thus, IFN-gamma, FasL, and iNOS appear to be essential for the complete control of parasite replication, while the contribution of TNF is more important in controlling inflammation at the site of parasite inoculation.