211 resultados para Immersion calorimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: Hyperlactatemia represents one prominent component of the metabolic response to sepsis. In critically ill patients, hyperlactatemia is related to the severity of the underlying condition. Both an increased production and a decreased utilization and clearance might be involved in this process, but their relative contribution remains unknown. The present study aimed at assessing systemic and muscle lactate production and systemic lactate clearance in healthy human volunteers, using intravenous endotoxin (LPS) challenge. METHODS: Fourteen healthy male volunteers were enrolled in 2 consecutive studies (n = 6 in trial 1 and n = 8 in trial 2). Each subject took part in one of two investigation days (LPS-day with endotoxin injection and placebo-day with saline injection) separated by one week at least and in a random order. In trial 1, their muscle lactate metabolism was monitored using microdialysis. In trial 2, their systemic lactate metabolism was monitored by means of a constant infusion of exogenous lactate. Energy metabolism was monitored by indirect calorimetry and glucose kinetics was measured with 6,6-H2 glucose. RESULTS: In both trials, LPS increased energy expenditure (p = 0.011), lipid oxidation (p<0.0001), and plasma lactate concentration (p = 0.016). In trial 1, lactate concentration in the muscle microdialysate was higher than in blood, indicating lactate production by muscles. This was, however, similar with and without LPS. In trial 2, calculated systemic lactate production increased after LPS (p = 0.031), while lactate clearance remained unchanged. CONCLUSIONS: LPS administration increases lactatemia by increasing lactate production rather than by decreasing lactate clearance. Muscle is, however, unlikely to be a major contributor to this increase in lactate production. TRIAL REGISTRATION: ClinicalTrials.gov NCT01647997.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the effects of digoxin, an inhibitor of the Na+ pump (Na(+)-K(+)-ATPase), on resting metabolic rate (RMR), respiratory quotient (RQ), and nutrient oxidation rate. Twelve healthy male subjects followed a double-blind protocol design and received either 1 mg/day digoxin or a placebo 2 days before indirect calorimetry measurements. Digoxin induced a 0.22 +/- 0.07 kJ/min or 3.8 +/- 1.5% (mean +/- SE, P = 0.01) decrease in RMR and a 0.40 +/- 0.13 kJ/min (P = 0.01) decrease in fat oxidation rate, whereas carbohydrate and protein oxidation rates did not change significantly. A dose-response relationship between serum digoxin and RQ was observed. These results suggest that digoxin reduces not only RMR but also fat oxidation rate by mechanisms that remain to be elucidated. Because a linkage and an association between genes coding the Na(+)-K(+)-ATPase and the RQ have been previously observed, the present demonstration of an effect of Na(+)-K(+)-ATPase inhibition on fat oxidation rate strengthens the concept that the activity of this enzyme may play a role in body weight regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports molar heat capacities of Ru50SixGe(50-x) and Ru40SiyGe(60-y) ternary solid solutions determined by differential scanning calorimetry. A second order transition has been characterised for alloys ranging from Ru40Ge60 to Ru40Si10Ge50 at temperatures ranging from 850 to 1040 K, respectively. Tie lines have been established at 1000-900-800-700-600 degrees C by electron microprobe measurements on annealed alloys of the two phase domains: Ru50SixGe(50-x)-Ru40SiyGe(60-y) and Ru40SiyGe(60-y)-SizGe(100-z).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of continuous and acute L-carnitine supplementation of total parenteral nutrition (TPN) on protein and fat oxidation in severe catabolism. A critically ill and severely malnourished male patient received TPN (non protein energy = 41 kcal/kg/day, provided equally as fat and glucose) over 38 days, without L-carnitine for 23 days and with carnitine supplements (15 mg/kg/day) for the following 15 days. Subsequently, he was given carnitine-free enteral nutrition for 60 more days. A four-hour infusion of 100 mg L-carnitine was given on day 11 of each TPN period. Indirect calorimetry was carried out after 11 days of either carnitine-free or supplemented TPN and at the initiation of enteral nutrition. Additional measurements were performed 4 hours and 24 hours after the acute infusions of carnitine. The rate of protein oxidation and the respiratory quotient were found to be higher, and the rate of fat oxidation to be lower, with carnitine-supplemented TPN, than with either carnitine-free TPN or enteral nutrition. Acute infusion of carnitine resulted in an increased rate of protein oxidation and a reduced rate of fat oxidation on both TPN-regimens. These unfavourable effects on protein metabolism may be due to an impairment of fat oxidation by excess amounts of carnitine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the University of Lausanne third-year medical students are given the task of spending a month investigating a question of community medicine. In 2009, four students evaluated the legitimacy of health insurers intervening in the management of depression. They found that health insurers put pressure on public authorities during the development of legislation governing the health system and reimbursement for treatment. This fact emerged during the scientific investigation led jointly by the team in the course of the "module of immersion in community medicine." This paper presents each step of their study. The example chosen illustrates the learning objectives covered by the module.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of combined long-chain triglyceride infusion (Intralipid 20%) with graded doses of insulin/glucose on energy expenditure was examined in 17 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Intralipid was infused for 90 min at a constant rate of 0.23 g/min; plasma free fatty acids increased from base-line values of 380 +/- 8 mumol/l to steady state levels of 650 +/- 12 mumol/l. After 90 min the Intralipid was continued and insulin was infused at three rates (0.5, 2, and 4 mU/kg . min) to achieve steady state hyperinsulinemic plateaus of 63 +/- 4, 167 +/- 10, and 410 +/- 15 microU/ml. Plasma glucose concentration was maintained constant at basal euglycemic levels (insulin clamp technique) by infusing glucose at 0.24, 0.48, and 0.59 g/min, respectively. Glucose storage during the insulin clamp (ie, glucose uptake minus glucose oxidation) was 0.13, 0.33, and 0.40 g/min for each group and exogenous lipid storage was 0.17, 0.18, and 0.19 g/min, respectively. The net increment in energy expenditure was 0.15, 0.24, and 0.26 kcal/min, respectively, which represents 8.5% of the energy content of the total amount of glucose and lipid stored. The experimentally determined value (approximately 9%) for the cost of storing both glucose and lipid was found to be significantly greater than predicted by stoichiometric calculations. However, the experimental value for the combined infusion was less than that observed for glucose storage alone (12%). This finding provides support for the use of combined glucose/fat infusions in parenteral nutrition as it is used more economically than when glucose is infused alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The relation between dietary carbohydrate: lipid ratio and the fuel mixture oxidized during 24 h was investigated in eleven healthy volunteers (six females, and five males) in a respiration chamber. Values of the fuel mixture oxidized were estimated by continuous indirect calorimetry and urinary nitrogen measurements. 2. The subjects, were first given a mixed diet for 7 d and spent the last 24 h of the 7 d period in a respiration chamber for continuous gas-exchange measurement. The fuels oxidized during 2.5 h or moderate exercise were also measured in the respiration chamber. After an interval of 2 weeks from the end of the mixed-diet period, the same subjects were given an isoenergetic high-carbohydrate low-fat diet for 7 d, and the same experimental regimen was repeated. 3. Dietary composition markedly influenced the fuel mixture oxidized during 24 h and this effect was still present 12 h after the last meal in the postabsorptive state. However, the diets had no influence on the substrates oxidized above resting levels during exercise. With both diets, the 24 h energy balance was slightly negative and the energy deficit was covered by lipid oxidation. 4. With the high-carbohydrate low-fat diet, the energy expenditure during sleep was found to be higher than that with the mixed diet. 5. It is concluded that: (a) the composition of the diet did not influence the fuel mixture utilized for moderate exercise, (b) the energy deficit calculated for a 24 h period was compensated by lipid oxidation irrespective of the carbohydrate content of the diet, (c) energy expenditure during sleep was found to be higher with the high-carbohydrate low-fat diet than with the mixed diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Discrepancies appear in studies comparing fat oxidation between men and women during exercise (1). Therefore, this study aimed to quantitatively describe and compare whole body fat oxidation kinetics between genders during exercise using a sinusoidal model (SIN) (2). Methods Twelve men and 11 women matched for age, body mass index (23.4±0.6 kg.m-2 and 21.5±0.8 kg.m-2, respectively) and aerobic fitness [maximal oxygen uptake ( ) (58.5±1.6 mL.kg FFM-1.min-1 and 55.3±2.0 mL.kg FFM-1.min-1, respectively) and power output ( ) per kilogram of fat-free mass (FFM)] performed submaximal incremental tests (Incr) with 5-min stages and 7.5% increment on a cycle ergometer. Respiratory and HR values were averaged over the last 2 minutes of each stage. All female study participants were eumenorrheic, reported regular menstrual cycles (28.6 ± 0.8 days) and were not taking oral contraceptives (OC) or other forms of exogenous ovarian hormones. Women were studied in the early follicular phase (FP) of their menstrual cycle (between days 3 and 8, where day 1 is the first day of menses). Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model (2), which includes three independent variables (dilatation, symmetry, translation), was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). Results During Incr, women exhibited greater fat oxidation rates from 35 to 85% , MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mgkg FFM-1min-1) and Fatmax (58.1 ± 1.9 vs. 50.0 ± 2.7% ) (P<0.05) than men. While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (P>0.05), the fat oxidation curve tended to be shifted towards higher exercise intensities in women (rightward translation, P=0.08). Conclusion These results showed that women, eumenorrheic, not taking OC and tested in FP, have a greater reliance on fat oxidation than men during submaximal exercise, but they also indicate that this greater fat oxidation is shifted towards higher exercise intensities in women compared with men. References 1. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4: 499-502, 2001. 2. Cheneviere X, Malatesta D, Peters EM, and Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc 41: 1615-1625, 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Exercise improves insulin resistance and is a first line for the prevention and treatment of type 2 diabetes. The extent, however, to which these responses are dose dependent is not known. The purpose of this study was to examine whether exercise dose was associated with improvements in insulin sensitivity after 4 months of exercise training in previously sedentary adults. METHODS: Fifty-five healthy volunteers participated in a 16-wk supervised endurance exercise intervention with a pre/postintervention design. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp, peak oxygen uptake by a graded exercise test, and body composition by dual-energy x-ray absorptiometry. The exercise intervention consisted of three to five sessions per week with a minimum of three sessions supervised. A ramped exercise prescription protocol was used to achieve 75% of peak HR for 45 min per session. Exercise dose, expressed as average kilocalories expended per week, was computed as the product of exercise intensity, duration and frequency. RESULTS: Improved insulin sensitivity was significantly related to exercise dose in a graded dose-response relationship. No evidence of threshold or maximal dose-response effect was observed. Age and gender did not influence this dose-response relationship. Exercise intensity was also significantly related to improvements in insulin sensitivity, whereas frequency was not. CONCLUSIONS: This study identifies a graded dose-response relationship between exercise dose and improvements in insulin sensitivity. The implication of this observation is of importance for the adaptation of exercise prescription in clinical situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous study, we demonstrated that the new beta-adrenoceptor agonist Ro 16-8714 possesses thermogenic property in normal male volunteers. The aim of the present study was to compare the metabolic response of lean vs obese individuals to a similar dose of this compound. Following an overnight fast, Ro 16-8714 (0.17 mg/kg fat free mass) or a placebo was given per os to six normal-weight subjects and to six moderately obese subjects. The rate of energy expenditure (EE) and the substrate utilization were determined by indirect calorimetry (hood system) before and for 6 h following the drug administration. Heart rate and blood pressure as well as plasma glucose, insulin and free fatty acid (FFA) concentrations were also measured at regular intervals throughout the study. The increment relative to base-line (mean +/- s.e.m.) in EE was similar in the two groups and averaged 4.0 +/- 1.4 per cent and 12.2 +/- 1.4 per cent with placebo and with Ro 16-8714 respectively in lean subjects, whereas the values reached 3.5 +/- 1.2 per cent and 14.4 +/- 2.0 per cent in obese subjects. Heart rate, systolic blood pressure, insulin and FFA were increased without any significant difference between the two groups. This study shows that Ro 16-8714 is a potent thermogenic agent both in normal and obese subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and beta-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C]triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and beta-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8 %, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to assess the contribution of the thermogenic effect of feeding and muscular activity to total energy expenditure, nine premature infants were studied for 2 consecutive days during which time repeated measurements of energy expenditure by indirect calorimetry were performed throughout the day, combined with a visual activity score based on body movement. The infants were growing at 16.6 +/- 4.0 g/kg/day (mean +/- SD) and received 110 +/- 8 kcal/kg/day metabolizable energy (milk formula) and 522 +/- 40 mgN/kg/day. Their total energy expenditure was 68 +/- 4 kcal/kg/day indicating that 41 +/- 7 kcal/kg/day was retained for growth. Based on the combination of energy + N balances it was estimated that 80% of the weight gain was fat-free tissue and 20% was fat tissue. The rate of energy expenditure measured minute-by-minute was significantly and linearly correlated with the activity score in both the premeal (r = 0.75;p less than 0.001) and the postmeal periods (r = 0.74; p less than 0.001) with no difference in the regression slope, but with a significant difference in intercept. In preset feeding schedules the latter allowed an estimation of the thermogenic effect without the confounding effect of activity. This was found to be 3.1 +/- 1.8% when expressed as a percentage of metabolizable energy intake. However when the "classical" approach was used as a comparison (integration of extra energy expenditure induced by the meal), the thermogenic effect was found to be greater, i.e. 9.5 +/- 3.8% of the meal's metabolizable energy, due to the superimposed effect of physical activity in the postprandial state.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to explore the thermogenic effect of thyroid hormone administration and the resulting changes in nitrogen homeostasis. Normal male volunteers (n = 7) received thyroxin during 6 weeks. The first 3-week period served to suppress endogenous thyroid secretion (180 micrograms T4/day). This dose was doubled for the next 3 weeks. Sleeping energy expenditure (respiratory chamber) and BMR (hood) were measured by indirect calorimetry, under standardized conditions. Sleeping heart rate was continuously recorded and urine was collected during this 12-hour period to assess nitrogen excretion. The changes in energy expenditure, heart rate and nitrogen balance were then related to the excess thyroxin administered. After 3 weeks of treatment, serum TSH level fell to 0.15 mU/L, indicating an almost complete inhibition of the pituitary-thyroid axis. During this phase of treatment there was an increase in sleeping EE and sleeping heart rate, which increased further by doubling the T4 dose (delta EE: +8.5 +/- 2.3%, delta heart rate +16.1 +/- 2.2%). The T4 dose, which is currently used as a substitutive dose, lead to a borderline hyperthyroid state, with an increase in EE and heart rate. Exogenous T4 administration provoked a significant increase in urinary nitrogen excretion averaging 40%. It is concluded that T4 provokes an important stimulation of EE, which is mostly mediated by an excess protein oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to examine the effects of a prior 1-hour continuous exercise bout (CONT) at an intensity (Fat(max)) that elicits the maximal fat oxidation (MFO) on the fat oxidation kinetics during a subsequent submaximal incremental test (IncrC). Twenty moderately trained subjects (9 men and 11 women) performed a graded test on a treadmill (Incr), with 3-minute stages and 1-km.h(-1) increments. Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity. A mathematical model (SIN) including 3 independent variables (dilatation, symmetry, and translation) was used to characterize the shape of fat oxidation kinetics and to determine Fat(max) and MFO. On a second visit, the subjects performed CONT at Fat(max) followed by IncrC. After CONT performed at 57% +/- 3% (means +/- SE) maximal oxygen uptake (Vo(2max)), the respiratory exchange ratio during IncrC was lower at every stage compared with Incr (P < .05). Fat(max) (56.4% +/- 2.3% vs 51.5% +/- 2.4% Vo(2max), P = .013), MFO (0.50 +/- 0.03 vs 0.40 +/- 0.03 g.min(-1), P < .001), and fat oxidation rates from 35% to 70% Vo(2max) (P < .05) were significantly greater during IncrC compared with Incr. However, dilatation and translation were not significantly different (P > .05), whereas symmetry tended to be greater in IncrC (P = .096). This study showed that the prior 1-hour continuous moderate-intensity exercise bout increased Fat(max), MFO, and fat oxidation rates over a wide range of intensities during the postexercise incremental test. Moreover, the shape of the postexercise fat oxidation kinetics tended to have a rightward asymmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resting metabolic rate (RMR) and the thermic effect of a meal (TEM) were measured in a group of 16 prepubertal (8.8 +/- 0.3 y) obese children (43.6 +/- 9.2 kg) and compared with a group of 10 age-matched (8.6 +/- 0.4 y), normal-weight children (31.0 +/- 6.0 kg). The RMR was higher in the obese than in the control children (4971 +/- 485 vs 4519 +/- 326 kJ/d, P < 0.05); after the RMR was adjusted for the effect of fat-free mass (FFM) the values were not significantly different (4887 +/- 389 vs 4686 +/- 389 kJ/d). The thermic response to a liquid mixed meal, expressed as a percentage of the energy content of the meal, was significantly lower in obese than in control children (4.4 +/- 1.2% vs 5.9 +/- 1.7%, P < 0.05). The blunted TEM shown by the obese children could favor weight gain and suggests that the defect in thermogenesis reported in certain obese adults may have already originated early in life.