173 resultados para Il-1
Resumo:
CONTEXT: There is contradictory information regarding the prognostic importance of adipocytokines, hepatic and inflammatory biomarkers on the incidence of type 2 diabetes. The objective was to assess the prognostic relevance of adipocytokine and inflammatory markers (C-reactive protein - CRP; interleukin-1beta - IL-1β; interleukin-6- IL-6; tumour necrosis factor-α - TNF-α; leptin and adiponectin) and gamma-glutamyl transpeptidase (γGT) on the incidence of type 2 diabetes. METHODS: Prospective, population-based study including 3,842 non-diabetic participants (43.3% men, age range 35 to 75 years), followed for an average of 5.5 years (2003-2008). The endpoint was the occurrence of type 2 diabetes. RESULTS: 208 participants (5.4%, 66 women) developed type 2 diabetes during follow-up. On univariate analysis, participants who developed type 2 diabetes had significantly higher baseline levels of IL-6, CRP, leptin and γGT, and lower levels of adiponectin than participants who remained free of type 2 diabetes. After adjusting for a validated type 2 diabetes risk score, only the associations with adiponectin: Odds Ratio and (95% confidence interval): 0.97 (0.64-1.47), 0.84 (0.55-1.30) and 0.64 (0.40-1.03) for the second, third and forth gender-specific quartiles respectively, remained significant (P-value for trend = 0.05). Adding each marker to a validated type 2 diabetes risk score (including age, family history of type 2 diabetes, height, waist circumference, resting heart rate, presence of hypertension, HDL cholesterol, triglycerides, fasting glucose and serum uric acid) did not improve the area under the ROC or the net reclassification index; similar findings were obtained when the markers were combined, when the markers were used as continuous (log-transformed) variables or when gender-specific quartiles were used. CONCLUSION: Decreased adiponectin levels are associated with an increased risk for incident type 2 diabetes, but they seem to add little information regarding the risk of developing type 2 diabetes to a validated risk score.
Resumo:
Pro-inflammatory cytokines and high-sensitive C-reactive protein (hs-CRP) are associated with increased risk for cardiovascular disease. Low-dose aspirin for CV prevention is reported to have anti-inflammatory effects. The aim of this study was to determine the association between pro-inflammatory cytokines and hs-CRP levels and low-dose aspirin use for cardiovascular prevention in a population-based cohort (CoLaus Study). We assessed blood samples in 6085 participants (3201 women) aged 35-75years. Medications' use and indications were recorded. Among aspirin users (n=1'034; 17%), overall low-dose users (351; 5.8%) and low-dose for cardiovascular prevention users (324; 5.3%) were selected for analysis. Pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α were assessed by a multiplex particle-based flow cytometric assay and hs-CRP by an immunometric assay. Cytokines and hs-CRP were presented in quartiles. Multivariate analysis adjusting for sex, age, smoking status, body mass index, diabetes mellitus and immunomodulatory drugs showed no association between cytokines and hs-CRP levels and low-dose aspirin use for cardiovascular prevention, either comparing the topmost vs. the three other quartiles (OR 95% CI, 0.84 (0.59-1.18), 1.03 (0.78-1.32), 1.10 (0.83-1.46), 1.00 (0.67-1.69) for IL-1β, IL-6, TNF-α and hs-CRP, respectively), or comparing the topmost quartile vs. the first one (OR 95% CI, 0.87 (0.60-1.26), 1.19 (0.79-1.79), 1.26 (0.86-1.84), 1.06 (0.67-1.69)). Low-dose aspirin use for cardiovascular prevention does not impact plasma pro-inflammatory cytokine and hs-CRP levels in a population-based cohort.
Resumo:
BACKGROUND: basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. METHODOLOGY PRINCIPAL FINDINGS: synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. CONCLUSIONS SIGNIFICANCE: intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct pathogenic role in OA. The effects are independent of IL-1 and NLRP3 inflammasome.
Resumo:
Objective: To assess the associations between obesity markers (BMI, waist circumference and %body fat) and inflammatory markers (interleukin-1β (IL-1β); interleukin-6 (IL-6); tumor necrosis factor-α (TNF-α) and high-sensitivity C-reactive protein (hs-CRP)). Methods: Population sample of 2,884 men and 3,201 women aged 35-75 years. Associations were assessed using ridge regression adjusting for age, leisure-time physical activity, and smoking. Results: No differences were found in IL-1β levels between participants with increased obesity markers and healthy counterparts; multivariate regression showed %body fat to be negatively associated with IL-1β. Participants with high %body fat or abdominal obesity had higher IL-6 levels, but no independent association between IL-6 levels and obesity markers was found on multivariate regression. Participants with abdominal obesity had higher TNF-α levels, and positive associations were found between TNF-α levels and waist circumference in men and between TNF-α levels and BMI in women. Obese participants had higher hs-CRP levels, and these differences persisted after multivariate adjustment; similarly, positive associations were found between hs-CRP levels and all obesity markers studied. Conclusion: Obesity markers are differentially associated with cytokine levels. %Body fat is negatively associated with IL-1β; BMI (in women) and waist circumference (in men) are associated with TNF-α; all obesity markers are positively associated with hs-CRP. Copyright © 2012 S. Karger GmbH, Freiburg.
Resumo:
The demyelinative potential of the cytokines interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) has been investigated in myelinating aggregate brain cell cultures. Treatment of myelinated cultures with these cytokines resulted in a reduction in myelin basic protein (MBP) content. This effect was additively increased by anti-myelin/oligodendrocyte glycoprotein (alpha-MOG) in the presence of complement. Qualitative immunocytochemistry demonstrated that peritoneal macrophages, added to the fetal telencephalon cell suspensions at the start of the culture period, successfully integrated into aggregate cultures. Supplementing the macrophage component of the cultures in this fashion resulted in increased accumulation of MBP. The effect of IFN-gamma on MBP content of cultures was not affected by the presence of macrophages in increased numbers.
Resumo:
Adult-onset Still's disease (AOSD) is a rare inflammatory disease characterized by the classical triad of daily fever, arthritis, and typical salmon-colored rash. Recent accumulation of knowledge, mostly arising from hereditary autoinflammatory diseases and from the systemic-onset juvenile idiopathic arthritis (sJIA), has given raise to new hypotheses on the pathophysiology of AOSD. In this review, we first discuss on the continuum between AOSD and sJIA. Then, we summarize current hypotheses on the underlying pathogenesis: (1) an infectious hypothesis; (2) an autoinflammatory hypothesis; (3) a lymphohistiocytic hypothesis; and (4) a hyperferritinemic hypothesis. Finally, we present the recent data suggesting that patients with AOSD fall into two distinct subgroups with different courses, one with prominent systemic features and one with chronic arthritis.
Resumo:
We have previously reported that the pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) induce profound modifications of the metabolic profile of astrocytes. The present study was undertaken to further characterize the effects of cytokines in astrocytes and to determine whether similar effects could also be observed in neurons. To do so, selected pro-inflammatory (IL-6 and interferon-γ, in addition to the above-mentioned TNFα and IL-1β) and anti-inflammatory cytokines (IL-4, IL-10, transforming growth factor-β1 and interferon-β) were applied to primary neuronal and astrocytic cultures, and key metabolic parameters were assessed. As a general pattern, we observed that pro-inflammatory cytokines increased glucose utilization in astrocytes while the anti-inflammatory cytokines IL-4 and IL-10 decreased astrocytic glucose utilization. In contrast, no significant change could be observed in neurons. When pairs of pro-inflammatory cytokines were co-applied in astrocytes, several additive or synergistic modifications could be observed. In contrast, IL-10 partially attenuated the effects of pro-inflammatory cytokines. Finally, the modifications of the astrocytic metabolism induced by TNFα + IL-1β and interferon-γ modulated neuronal susceptibility to an excitotoxic insult in neuron-astrocyte co-cultures. Together, these results suggest that pro- and anti-inflammatory cytokines differentially affect the metabolic profile of astrocytes, and that these changes have functional consequences for surrounding neurons.
Resumo:
Résumé large public: Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique précoce de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant les mécanismes cellulaires de la pathogenèse restent à identifier. Le métabolisme cérébral a ceci de remarquable qu'il repose sur la coopération entre deux types cellulaires, ainsi les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Ces fonctions astrocytaires sont essentielles au bon fonctionnement et à la survie neuronale; par conséquent, une altération de ces fonctions astrocytaires pourrait participer au développement de certaines maladies cérébrales. Le but de ce travail est, dans un premier temps, d'explorer les effets de médiateurs de la neuroinflammation (les cytokines pro-inflammatoires) et du peptide beta-amyloïde sur le métabolisme des astrocytes corticaux, en se focalisant sur les éléments en lien avec le métabolisme énergétique et le stress oxydatif. Puis, dans un second temps, de caractériser les conséquences pour les neurones des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus ici montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme énergétique du glucose, en diminuant l'apport potentiel de substrats énergétiques aux neurones. En plus de son effet propre, le peptide beta-amyloïde potentialise les effets des cytokines pro-inflammatoires. Or, dans le cerveau de patients atteints de la MA, les astrocytes sont exposés simultanément à ces deux types de substances. Les deux types de substances ont un effet ambivalent en termes de stress oxydatif. Ils induisent à la fois une augmentation de la libération de glutathion (potentiellement protecteur pour les neurones voisins) et la production d'espèces réactives de l'oxygène (potentiellement toxiques). Etant donné l'importance de la coopération entre astrocytes et neurones, ces modulations du métabolisme astrocytaire pourraient donc avoir un retentissement majeur sur les cellules environnantes, et en particulier sur la fonction et la survie neuronale. Résumé Les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, tels que le lactate, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique, précoce, de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant, les mécanismes cellulaires de la pathogenèse restent à identifier. Le but de ce travail est d'explorer les effets des cytokines pro-inflammatoires (Il-1 ß et TNFα) et du beta-amyloïde (Aß) sur le métabolisme du glucose des astrocytes corticaux en culture primaire ainsi que de caractériser les conséquences, pour la viabilité des neurones voisins, des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme glycolytique astrocytaire. Après 48 heures, le traitement avec TNFα et Il-lß cause une augmentation de la capture de glucose et de son métabolisme dans la voie des pentoses phosphates et dans le cycle de Krebs. A l'inverse, il cause une diminution de la libération de lactate et des stocks cellulaires de glycogène. En combinaison avec les cytokines tel qu'in vivo dans les cerveaux de patients atteints de MA, le peptide betaamyloïde potentialise les effets décrits ci-dessus. Isolément, le Aß cause une augmentation coordonnée de la capture de glucose et de toutes les voies de son métabolisme (libération de lactate, glycogenèse, voie des pentoses phosphate et cycle de Krebs). Les traitements altèrent peu les taux de glutathion intracellulaires, par contre ils augmentent massivement la libération de glutathion dans le milieu extracellulaire. A l'inverse, les deux types de traitements augmentent la production intracellulaire d'espèces réactives de l'oxygène (ROS). De plus, les cytokines pro-inflammatoires en combinaison augmentent massivement la production des ROS dans l'espace extracellulaire. Afin de caractériser l'impact de ces altérations métaboliques sur la viabilité des neurones environnants, un modèle de co-culture et des milieux conditionnés astrocytaires ont été utilisés. Les résultats montrent qu'en l'absence d'une source exogène d'antioxydants, la présence d'astrocytes favorise la viabilité neuronale ainsi que leur défense contre le stress oxydatif. Cette propriété n'est cependant pas modulée par les différents traitements. D'autre part, la présence d'astrocytes, et non de milieu conditionné, protège les neurones contre l'excitotoxicité due au glutamate. Les astrocytes prétraités (aussi bien avec le beta-amyloïde qu'avec les cytokines pro-inflammatoires) perdent cette propriété. Cet élément suggère que la perturbation du métabolisme astrocytaire causé par les cytokines pro-inflammatoires ou le beta-amyloïde pourrait participer à l'atteinte de la viabilité neuronale associée à certaines pathologies neurodégénératives.
Resumo:
Plasmodium sporozoites traverse several host cells before infecting hepatocytes. In the process, the plasma membranes of the cells are ruptured, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory/immunogenic and can serve as a danger signal initiating distinct responses in various cells. Thus, our study aimed at characterizing the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-kappaB, a main regulator of host inflammatory responses, in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-kappaB occurred shortly after infection and led to a reduction of infection load in a time-dependent manner in vitro and in vivo, an effect that could be reverted by addition of the specific NF-kappaB inhibitor BAY11-7082. Furthermore, no NF-kappaB activation was observed when Spect(-/-) parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-kappaB activation causes the induction of inducible NO synthase expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88(-/-) mice showed no NF-kappaB activation and inducible NO synthase expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. Thus, host cell wounding due to parasite migration induces inflammation which limits the extent of parasite infection
Resumo:
Human keratinocytes represent a potent source of the pro-inflammatory cytokines pro-interleukin(IL)-1α and -β. ProIL-1β requires processing by caspase-1 (IL-1β-converting enzyme, ICE) for activation and receptor binding. ProIL-1α and -β lack a signal peptide and leave the cell via the alternative secretion pathway, which is independent of the classical ER/Golgi pathway. Both cytokines are stored in the cytoplasm and can be activated and released upon UV irradiation. In macrophages maturation of proIL-1β requires the activation of inflammasomes, innate multiprotein immune complexes, which are essential for the activation of caspase-1 and thereby for processing of proIL-1β. However, the intracellular pathways, which are responsible for activation of proIL-1β and secretion of IL-1β in keratinocytes, are unknown. We show that human keratinocytes express inflammasome proteins in vitro and in vivo. UVB irradiation of keratinocytes results in an increase of cytoplasmic Ca2+ from intracellular stores. This shift is required for inflammasome-dependent activation of caspase-1 and subsequent processing of proIL-1β and secretion of IL-1β. In contrast to macrophages, caspase-1 cannot activate proIL-18 in keratinocytes, although secretion of this cytokine is also induced by UVB irradiation. In vivo, caspase-1 is also essential for UVB-induced inflammation in the skin, since caspase-1 knockout mice showed a strongly reduced inflammatory response after UVB irradiation. Our results suggest that keratinocytes are important immuno-competent cells under physiological and pathological conditions.
Resumo:
Background and aims: The phosphoinositide phosphatase PTEN is a potent tumor suppressor and a regulator of insulin sensitivity in peripheral tissues. In adipocytes, experimental alterations of PTEN expression modulate the sensitivity of these cells to insulin. However, virtually nothing is known about the pathophysiological regulation of endogenous PTEN in adipose tissue. Herein, we investigated in vivo and in vitro whether alterations of PTEN expression in adipocytes are associated with the metabolic syndrome and what are the functional outcomes of dysregulated PTEN expression/activity. Materials and methods: PTEN expression was examined in vivo in adipose tissue of rats and human with the metabolic syndrome. Metabolic factors mediating dysregulation of PTEN expression in adipocytes and the subsequent effects on the physiology of these cells were investigated in vitro using human CHUB-S7 preadipocytes. Results: We demonstrated that PTEN is downregulated, both at the mRNA and protein levels, in adipose tissue of diabetic/obese ZDF rats and in subcutaneous adipose tissue of obese human patients. PTEN downregulation correlated with degradation of IκBα and hyperactivation of NF-κB, a transcription factor previously described to modulate PTEN expression. The expression of SHIP2, another PtdIns(3,4,5)P3 phosphatase involved in the control of insulin sensitivity and the development of obesity, was not altered. In vitro analyses using differentiated human CHUB-S7 preadipocytes showed that PTEN downregulation is not triggered by high concentrations of glucose or fatty acids. In contrast, the pro-inflammatory cytokines IL-1α and TNFα, significantly downregulate PTEN expression. Consistent with the IL1α-dependent PTEN downregulation, long-term incubation of CHUB-S7 cells with IL-1α potentiates insulin-induced Akt and ERK1/2 signaling. We finally showed that PTEN downregulation in CHUB-S7 preadipocytes by PTEN siRNAs induced an increased secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNFα. Conclusion: Taken together, these data indicate that PTEN expression is downregulated in adipose tissue of obese/diabetic subjects, potentially via cytokine- mediated activation of the NF-κB pathway. PTEN downregulation in adipocytes might in turn worsen adipose tissue inflammation through a vicious circle by further stimulating the secretion of pro-inflammatory cytokines.
Resumo:
BACKGROUND: Particulate air pollution is associated with increased risk of cardiovascular disease and stroke. Although the precise mechanisms underlying this association are still unclear, the induction of systemic inflammation following particle inhalation represents a plausible mechanistic pathway.¦METHODS: We used baseline data from the CoLaus Study including 6183 adult participants residing in Lausanne, Switzerland. We analyzed the association of short-term exposure to PM10 (on the day of examination visit) with continuous circulating serum levels of high-sensitive C-reactive protein (hs-CRP), interleukin 1-beta (IL-1β), interleukin 6 (IL-6), and tumor-necrosis-factor alpha (TNF-α) by robust linear regressions, controlling for potential confounding factors and assessing effect modification.¦RESULTS: In adjusted analyses, for every 10 μg/m3 elevation in PM10, IL-1ß increased by 0.034 (95 % confidence interval, 0.007-0.060) pg/mL, IL-6 by 0.036 (0.015-0.057) pg/mL, and TNF-α by 0.024 (0.013-0.035) pg/mL, whereas no significant association was found with hs-CRP levels.¦CONCLUSIONS: Short-term exposure to PM10 was positively associated with higher levels of circulating IL-1ß, IL-6 and TNF-α in the adult general population. This positive association suggests a link between air pollution and cardiovascular risk, although further studies are needed to clarify the mechanistic pathway linking PM10 to cardiovascular risk.
Resumo:
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.
Resumo:
Inflammation is one possible mechanism underlying the associations between mental disorders and cardiovascular diseases (CVD). However, studies on mental disorders and inflammation have yielded inconsistent results and the majority did not adjust for potential confounding factors. We examined the associations of several pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and high sensitive C-reactive protein (hsCRP) with lifetime and current mood, anxiety and substance use disorders (SUD), while adjusting for multiple covariates. The sample included 3719 subjects, randomly selected from the general population, who underwent thorough somatic and psychiatric evaluations. Psychiatric diagnoses were made with a semi-structured interview. Major depressive disorder was subtyped into "atypical", "melancholic", "combined atypical-melancholic" and "unspecified". Associations between inflammatory markers and psychiatric diagnoses were assessed using multiple linear and logistic regression models. Lifetime bipolar disorders and atypical depression were associated with increased levels of hsCRP, but not after multivariate adjustment. After multivariate adjustment, SUD remained associated with increased hsCRP levels in men (β = 0.13 (95% CI: 0.03,0.23)) but not in women. After multivariate adjustment, lifetime combined and unspecified depression were associated with decreased levels of IL-6 (β = -0.27 (-0.51,-0.02); β = -0.19 (-0.34,-0.05), respectively) and TNF-α (β = -0.16 (-0.30,-0.01); β = -0.10 (-0.19,-0.02), respectively), whereas current combined and unspecified depression were associated with decreased levels of hsCRP (β = -0.20 (-0.39,-0.02); β = -0.12 (-0.24,-0.01), respectively). Our data suggest that the significant associations between increased hsCRP levels and mood disorders are mainly attributable to the effects of comorbid disorders, medication as well as behavioral and physical CVRFs.
Resumo:
A chronic inflammatory microenvironment favors tumor progression through molecular mechanisms that are still incompletely defined. In inflammation-induced skin cancers, IL-1 receptor- or caspase-1-deficient mice, or mice specifically deficient for the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) in myeloid cells, had reduced tumor incidence, pointing to a role for IL-1 signaling and inflammasome activation in tumor development. However, mice fully deficient for ASC were not protected, and mice specifically deficient for ASC in keratinocytes developed more tumors than controls, suggesting that, in contrast to its proinflammatory role in myeloid cells, ASC acts as a tumor-suppressor in keratinocytes. Accordingly, ASC protein expression was lost in human cutaneous squamous cell carcinoma, but not in psoriatic skin lesions. Stimulation of primary mouse keratinocytes or the human keratinocyte cell line HaCaT with UVB induced an ASC-dependent phosphorylation of p53 and expression of p53 target genes. In HaCaT cells, ASC interacted with p53 at the endogenous level upon UVB irradiation. Thus, ASC in different tissues may influence tumor growth in opposite directions: it has a proinflammatory role in infiltrating cells that favors tumor development, but it also limits keratinocyte proliferation in response to noxious stimuli, possibly through p53 activation, which helps suppressing tumors.