152 resultados para INTERMEDIATE MOMENTUM-TRANSFER
Resumo:
Introduction: EORTC trial 22991 randomly assessed the addition of concomitant and adjuvant short-term hormonal therapy to curative conformal/intensity-modulated radiotherapy (RT) for intermediate risk localized prostate cancer. We report the acute toxicity (assessed weekly during RT) for the organs at risk (genito-urinary (GU) and gastro-intestinal (GI)) in relation to radiation parameters. Material and Methods: Eligibility criteria were age _80 years, PSA _ 50 ng/ml, N0M0 and either tumour stage cT2a (1997 UICC TNM) or cT1b-c combined with PSA_10 ng/ml and/or Gleason score _7. We report toxicity for all eligible patients who received the planned RT with documented acute toxicity (CTCAEv.2) and RT-quality assurance parameters. The RT dose (70 Gy, 74 Gy or 78 Gy) and technique (3DCRT vs IRMT) were per institution choice, the randomization was stratified for institution. Statistical significance was set at 0.05. (ClinicalTrials.gov: NCT00021450) Results: Of 819 randomized patients, 28 were excluded from the analysis (3 with <60 Gy RT, 25 with missing information). Of the 791 analysed patients, 652 (82.4%) were treated with 3D-CRT, 139 with IMRT. In the 3DCRT group, 195 patients (29.9%) were treated with a total prescribed dose of 70 Gy; 376 (57.7%) with 74 Gy and 81 (12.4%) with 78 Gy. In the IMRT group, 28 (20.1%) were treated to a total dose of 74 Gy and 111 (79.9%) with 78 Gy. Overall, only 7 of 791 patients (0.9%) had grade 3 GI toxicity during RT: diarrhea (N = 6), rectal bleeding (N = 1) and proctitis (N = 1). Fifty patients (6.3%) had grade 3 GU toxicity: urinary frequency (N = 38, 4.6%), dysuria (N = 14, 1.7%), urinary retention (N = 11, 1.3%), urinary incontinence (N = 2) and hematuria (N = 1). No grade 4 toxicity was reported. Hormonal treatment did not influence the risk of side effects (p>0.05). The risk of grade _2 GI toxicity significantly correlated to D50%-rectum (p = 0.004) with a cut-of value of 44 Gy. The risk of grade _2 GU toxicity was moderately affected by Dmax-bladder (p = 0.051). Overall, only 14 patients (1.8%) had residual grade 3 toxicities one month after RT. Conclusion: 3D-CRT and IMRT up to 78 Gy is well tolerated. Dmaxbladder and D50%-rectum were related to the risk of grade_2 GU and GI toxicity, respectively. IMRT lowered D50% rectum and Dmax-bladder. An irradiated volume >400 cc for 3D-RT and a dose of 78 Gy, even for IMRT, negatively affected those parameters and increased the risk for toxicity.
Resumo:
Genomic islands (GEI) comprise a recently recognized large family of potentially mobile DNA elements and play an important role in the rapid differentiation and adaptation of bacteria. Most importantly, GEIs have been implicated in the acquisition of virulence factors, antibiotic resistances or toxic compound metabolism. Despite detailed information on coding capacities of GEIs, little is known about the regulatory decisions in individual cells controlling GEI transfer. Here, we show how self-transfer of ICEclc, a GEI in Pseudomonas knackmussii B13 is controlled by a series of stochastic processes, the result of which is that only a few percent of cells in a population will excise ICEclc and launch transfer. Stochastic processes have been implicated before in producing bistable phenotypic transitions, such as sporulation and competence development, but never before in horizontal gene transfer (HGT). Bistability is instigated during stationary phase at the level of expression of an activator protein InrR that lays encoded on ICEclc, and then faithfully propagated to a bistable expression of the IntB13 integrase, the enzyme responsible for excision and integration of the ICEclc. Our results demonstrate how GEI of a very widespread family are likely to control their transfer rates. Furthermore, they help to explain why HGT is typically confined to few members within a population of cells. The finding that, despite apparent stochasticity, HGT rates can be modulated by external environmental conditions provides an explanation as to why selective conditions can promote DNA exchange.
Resumo:
The integrative and conjugative element ICEclc is a mobile genetic element in Pseudomonas knackmussii B13, and an experimental model for a widely distributed group of elements in Proteobacteria. ICEclc is transferred from specialized transfer competent cells, which arise at a frequency of 3-5% in a population at stationary phase. Very little is known about the different factors that control the transfer frequency of this ICE family. Here we report the discovery of a three-gene operon encoded by ICEclc, which exerts global control on transfer initiation. The operon consists of three consecutive regulatory genes, encoding a TetR-type repressor MfsR, a MarR-type regulator and a LysR-type activator TciR. We show that MfsR autoregulates expression of the operon, whereas TciR is a global activator of ICEclc gene expression, but no clear role was yet found for MarR. Deletion of mfsR increases expression of tciR and marR, causing the proportion of transfer competent cells to reach almost 100% and transfer frequencies to approach 1 per donor. mfsR deletion also caused a two orders of magnitude loss in population viability, individual cell growth arrest and loss of ICEclc. This indicates that autoregulation is an important feature maintaining ICE transfer but avoiding fitness loss. Bioinformatic analysis showed that the mfsR-marR-tciR operon is unique for ICEclc and a few highly related ICE, whereas tciR orthologues occur more widely in a large variety of suspected ICE among Proteobacteria.
Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells.
Resumo:
BACKGROUND: Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated. RESULTS: Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs. CONCLUSIONS: Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells.
Resumo:
The peroxisome proliferator-activated receptor (PPAR)-β/δ has emerged as a promising therapeutic target for treating dyslipidemia, including beneficial effects on HDL cholesterol (HDL-C). In the current study, we determined the effects of the PPAR-β/δ agonist GW0742 on HDL composition and the expression of liver HDL-related genes in mice and cultured human cells. The experiments were carried out in C57BL/6 wild-type, LDL receptor (LDLR)-deficient mice and PPAR-β/δ-deficient mice treated with GW0742 (10mg/kg/day) or a vehicle solution for 14 days. GW0742 upregulated liver phospholipid transfer protein (Pltp) gene expression and increased serum PLTP activity in mice. When given to wild-type mice, GW0742 significantly increased serum HDL-C and HDL phospholipids; GW0742 also raised serum potential to generate preβ-HDL formation. The GW0742-mediated effects on liver Pltp expression and serum enzyme activity were completely abolished in PPAR-β/δ-deficient mice. GW0742 also stimulated PLTP mRNA expression in mouse J774 macrophages, differentiated human THP-1 macrophages and human hepatoma Huh7. Collectively, our findings demonstrate a common transcriptional upregulation by GW0742-activated PPAR-β/δ of Pltp expression in cultured cells and in mouse liver resulting in enhanced serum PLTP activity. Our results also indicate that PPAR-β/δ activation may modulate PLTP-mediated preβ-HDL formation and macrophage cholesterol efflux.
Resumo:
Before 2011, patients with advanced or metastatic melanoma had a particularly poor long-term prognosis. Since traditional treatments failed to confer a survival benefit, patients were preferentially entered into clinical trials of investigational agents. A greater understanding of the epidemiology and biology of disease has underpinned the development of newer therapies, including six agents that have been approved in the EU, US and/or Japan: a cytotoxic T-lymphocyte antigen-4 inhibitor (ipilimumab), two programmed cell death-1 receptor inhibitors (nivolumab and pembrolizumab), two BRAF inhibitors (vemurafenib and dabrafenib) and a MEK inhibitor (trametinib). The availability of these treatments has greatly improved the outlook for patients with advanced melanoma; however, a major consideration for physicians is now to determine how best to integrate these agents into clinical practice. Therapeutic decisions are complicated by the need to consider patient and disease characteristics, and individual treatment goals, alongside the different efficacy and safety profiles of agents with varying mechanisms of action. Long-term survival, an outcome largely out of reach with traditional systemic therapies, is now a realistic goal, creating the additional need to re-establish how clinical benefit is evaluated. In this review we summarise the current treatment landscape in advanced melanoma and discuss the promise of agents still in development. We also speculate on the future of melanoma treatment and discuss how combination and sequencing approaches may be used to optimise patient care in the future.
Resumo:
L'élément génétique intégratif et conjugatif auto-transférable de 103 kb qui se trouve dans le génome de Pseudomonas knackmussii B13 (ICEc/c) confère la capacité de dégrader le 3-chlorobenzoate et le 2-aminophénol. L'élément ICE c/c peut être transféré par conjugaison de la souche B13 à diverses bêta- et gamma- protéobactéries. Seule une sous-population de 3 à 5% des cellules transfère l'élément, les cellules dites "compétentes pour le transfert". L'acquisition de la compétence pour le transfert est vraisemblablement la conséquence d'une régulation bistable, conduisant une partie des cellules au transfert de l'élément ICE c/c tandis que, dans les autres, l'élément reste quiescent et ne se transfère pas. À ce jour, les mécanismes et les acteurs moléculaires qui régulent l'activation bistable de l'élément sont restés inconnus. Mon travail de doctorat visait à identifier les éléments bistables du régulon de la compétence pour le transfert et d'analyser les fondements moléculaires de la bistabilité de l'élément ICE c/c chez P. knackmussii. Le premier chapitre introduit le thème du transfert génétique horizontal avec un accent particulier sur les éléments intégratifs et conjugatifs (ICE) et ICEcIc. L'état actuel des connaissances sur l'organisation génétique, la régulation, l'intégration et le transfert de différents modèles de ICEs est exposé en détail. En outre, je m'étends sur les phénomènes d'hétérogénéité et de bistabilité phénotyplques, qu'on peut distinguer dans une population isogénique dans des conditions de culture homogènes, et qui sont susceptibles de jouer un rôle dans le transfert de l'élément ICE c/c, dans la mesure où il ne s'active et n'est transférable que dans une très petite sous-population de cellules. Dans le chapitre 2, je présente une analyse globale des régions promotrices minimales des gènes appartenant au régulon de la compétence pour le transfert de l'élément ICE c/c. Nous avons étudié les caractéristiques d'expression des promoteurs et, s'ils s'avéraient bistables, leur activation dans le temps par comparaison avec le mutant lntB13. Pour ce faire, nous avons utilisé des fusions de promoteurs avec des gènes rapporteurs et testé l'expression bistable chez P. knackmussii par microscopie à épifluorescence. Pour six promoteurs présentant une expression bistable, nous avons employé de la microscopie temporelle pour déterminer la chronologie de leur expression par rapport à Pint et PinR. Parmi eux, nous avons identifié deux gènes exprimés précocement et trois gènes exprimés tardivement dans le processus d'acquisition de la compétence de transfert. Dans le chapitre 3, j'expose une analyse d'expression génétique pour l'un des groupes de gènes dont la transcription est la plus élevée dans la région conservée de ICE c/c, les gènes orf81655-orf68241 contenus dans une région de 14 kb. Nous montrons d'abord que cet opéron fait partie du même régulon bistable que intB13 et inrR et analysons les caractéristiques génétiques qui conduisent à une transcription élevée. Nous étudions les fonctions biologiques de ce groupe de gènes par des délétlons ciblées et montrons que certaines d'entre elles empêchent le transfert de l'élément. Nous approfondissons la caractérlsatlon de I'orf8l655 en construisant une fusion transcrlptionnelle avec le gène codant pour la protéine fluorescente verte (egfp) (en utilisant le système minl-Tn5). L'expression de Vorf81655 dans des cellules individuelles est comparée au signal mesuré par hybridation in situ en fluorescence (FISH) sur le ARN messager du gène. En utilisant FISH, des délétlons du promoteur et de l'analyse directe de transcription, nous avons localisé la région promotrice du groupe de gènes. En outre, nous avons utilisé des mutations dirigées pour comprendre la bistabilité de cette région promotrice, caractérisée par une transcription très élevée et une traduction lente de l'ARN messager. Dans le chapitre 4, nous nous efforçons de comprendre comment la bistabilité est générée au sein du régulon te de l'élément ICE c/c. Pour ce faire, nous avons tenté de reconstituer une expression bistable, dans un hôte qui ne présente pas de bistabilité naturellement, à partir d'éléments génétiques individuels. L'hôte choisi est Pseudomonas putida dans lequel nous avons introduit une copie unique de Pint, PinR ou PaipA fusionnés à la egfp, construits qui permettent d'observer l'apparition de bistabilité. Nous avons ensuite construit différents assemblages de composants génétiques de l'élément ICE c/c, en nous concentrant sur la région parA-inrR. En effet, nous avons pu démontrer qu'une expression bistable apparaît dans P. putida grâce à ces éléments en l'absence de l'élément ICE c/c complet. À noter que la plupart des construits génétiques activent PaipA ou P|,,R, mais qu'un seul recrée la bistabilité de Pint, ce qui suggère que la région parA-inrR permet à la fois d'engendrer la bistabilité et d'opérer la transition entre les promoteurs précoces et les promoteurs tardifs du régulon de la bistabilité. Dans le chapitre 5, nous concluons sur une discussion de la pertinence de nos résultats et sur de futures perspectives de recherche. -- The 103-kb self-transmissible integrative and conjugative element (ICE) of Pseudomonas knackmussii B13 (ICEc/c) confers the capacity to degrade 3- chlorobenzoate and 2-aminophenol. ICEc/c can be conjugated from strain B13 to a variety of Beta- and Gammaproteobacteria. Interestingly, ICE c/c transfer is observed in a subpopulatlon of cells (3-5%) only, the so-called 'transfer competent' cells. The formation of transfer competence (tc) is thought to be the consequence of a 'bistable' decision, which forces those cells to follow the developmental path which leads to ICEc/c transfer, whereas in others ICE c/c remains silent and does not transfer. So far, the mechanisms and molecular partners generating this bistable transfer activation in cells of P. knackmussii B13 remain mostly unidentified. This thesis aimed at understanding the extent of the tc bistability regulon and to dissect the molecular basis of bistabillty formation of ICEc/c in P. knackmussii. The first chapter is a general Introduction on horizontal gene transfer (HGT) with particular emphasis on ICEs and ICE c/c. The emphasis is made on the current knowledge about the HGT gene organization, regulation and specific integration and transfer aspects of the different ICEs models. Furthermore, I focus on the phenomena of phenotypic heterogeneity and bistability (the property of two distinguishable phenotypes existing within an isogenic population under homogeneous conditions), which may play a particular role in ICEc/c behaviour, since ICE activation and transfer only occurs in a very small subpopulation of cells. In Chapter Two, I focus on a global analysis of the different core promoters that might belong to the ICEc/c tc pathway regulon. We studied both expression patterns of ICEc/c promoters and, once being identified as "bistable", their temporal activation compared to that of intB13. In order to do this, we used promoter reporter fusions and tested blstability expression in P. knackmussii using epifluorescence microscopy. For the 6 promoters that showed bistable expression, we used time-lapse microscopy to study the timing of promoter expression in comparison to that of P,,,t or PlnR. We could establish two "early" and 3 "late" phase promoters in the process of transfer competence. In Chapter Three, I focused my attention on analysis of gene expression of one of the most highly transcribed gene clusters in the conserved core region of ICEc/c, a 14-kb gene cluster formed by the genes orf81655-orf68241. First we showed that this operon is part of the same bistability 'regulon' as intB13 and inrR, and analysed the genetic features that lead to high transcription. We studied the potential biological function of this cluster for ICE c/c by making specific gene deletions, showing that some interrupt ICEc/c transfer. We further analysed the orfdl655 promoter by constructing transcriptional egfp fusion reporter strains using the miniTn5 delivery system. Expression of the orf81655 promoter in single cells was compared to signals measured by Fluorescence In Situ Hybridization (FISH) on orfSl655 mRNA. We localized the promoter region of the gene cluster using FISH, promoter deletions, and by direct transcript analysis. We further used site-directed mutagenesis to understand the bistability character of the promoter region and the extremely high transcription but low translation from this mRNA. In Chapter Four, we set out to understand how bistability is generated in the tc pathway of ICEc/c. For this we tried rebuilding bistable expression from ICEc/c individual gene components in a host, which normally does not display bistability. As host we used P. putida without ICEc/c but with a single copy Pint-, PlnR- or PalpA- egfp fusion that enabled us to verify bistability formation. Subsequently, we built different assemblages of ICEc/c gene components, focusing on the parA-inrR region. Indeed, we found that bistable expression can be build from those components in P. putida without ICEc/c. Interestingly, most genetic constructs activated PaipA or PlnR, but only one resulted in bistable activation of PinT. This suggests that the parA-inrR region acts as a bistability "generator", but also as a bistability "relay" from early to late promoters in the tc pathway hierarchy. In the final fifth chapter, we conclude with a discussion of the relevance of the present thesis and the resulting perspectives for future studies.
Resumo:
Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications.
Resumo:
Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches.
Resumo:
To determine the feasibility of data transfer, an interlaboratory comparison was conducted on colon carcinoma cell line (DLD-1) proteins resolved by two-dimensional polyacrylamide gel electrophoresis either on small (6 x 7 cm) or large (16x18 cm) gels. The gels were silver-stained and scanned by laser densitometry, and the image obtained was analyzed using Melanie software. The number of spots detected was 1337+/-161 vs. 2382+/-176 for small vs. large format gels, respectively. After gel calibration using landmarks determined using pl and Mr markers, large- and small-format gels were matched and 712+/-36 proteins were found on both types of gels. Having performed accurate gel matching it was possible to acquire additional information after accessing a 2-D PAGE reference database (http://www.expasy.ch/ cgibin/map2/def?DLD1_HUMAN). Thus, the difference in gel size is not an obstacle for data transfer. This will facilitate exchanges between laboratories or consultation concerning existing databases.
Resumo:
UNLABELLED: The aim of this study was to compare perceived barriers to and the most preferred age for successful transition to adult health care between young people with chronic disorders who had not yet transferred from pediatric to adult health care (pre-transfer) and those who had already transferred (post-transfer). In a cross-sectional study, we compared 283 pre-transfer with 89 post-transfer young people, using a 28-item questionnaire that focused on perceived barriers to transition and beliefs about the most preferred age to transfer. Feeling at ease with the pediatrician was the most important barrier to successful transition in both groups, but was rated significantly higher in the pre-transfer compared to the post-transfer group (OR = 2.03, 95 %CI 1.12-3.71). Anxiety and lack of information were the next most important barriers, rated equally highly by the two groups (OR = 0.67, 95 %CI 0.35-1.28 and OR = 0.71, 95 %CI 0.36-1.38, respectively). More than 80 % of the respondents in both groups reported that 16-19 years was the most preferred age to transfer; more than half of all the respondents reported 18-19 years and older as the most preferred age. CONCLUSION: Better transition planning through the provision of regular and more detailed information about adult health-care providers and the transition process could reduce anxiety and contribute to a more positive attitude to overcome perceived barriers to transition from young people's perspective. Young people's preferences about transferring to adult health care provide a challenge to those children's hospitals that transfer to adult health care at a younger age.
Resumo:
PURPOSE: Unlike in the outpatient setting, delivery of aerosols to critically ill patients may be considered complex, particularly in ventilated patients, and benefits remain to be proven. Many factors influence aerosol delivery and recommendations exist, but little is known about knowledge translation into clinical practice. METHODS: Two-week cross-sectional study to assess the prevalence of aerosol therapy in 81 intensive and intermediate care units in 22 countries. All aerosols delivered to patients breathing spontaneously, ventilated invasively or noninvasively (NIV) were recorded, and drugs, devices, ventilator settings, circuit set-up, humidification and side effects were noted. RESULTS: A total of 9714 aerosols were administered to 678 of the 2808 admitted patients (24 %, CI95 22-26 %), whereas only 271 patients (10 %) were taking inhaled medication before admission. There were large variations among centers, from 0 to 57 %. Among intubated patients 22 % (n = 262) received aerosols, and 50 % (n = 149) of patients undergoing NIV, predominantly (75 %) inbetween NIV sessions. Bronchodilators (n = 7960) and corticosteroids (n = 1233) were the most frequently delivered drugs (88 % overall), predominantly but not exclusively (49 %) administered to patients with chronic airway disease. An anti-infectious drug was aerosolized 509 times (5 % of all aerosols) for nosocomial infections. Jet-nebulizers were the most frequently used device (56 %), followed by metered dose inhalers (23 %). Only 106 (<1 %) mild side effects were observed, despite frequent suboptimal set-ups such as an external gas supply of jet nebulizers for intubated patients. CONCLUSIONS: Aerosol therapy concerns every fourth critically ill patient and one-fifth of ventilated patients.