357 resultados para Glucose-transporter Isoforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:HIV-1-infected patients vary considerably by their response to antiretroviral treatment, drug concentrations in plasma, toxic events, and rate of immune recovery. This variability could have a genetic basis. We did a pharmacogenetics study to analyse the association between response to antiretroviral treatment and allelic variants of several genes. METHODS:In 123 patients, we did PCR analyses of the gene for the multidrug-resistance transporter (MDR1), which codes for P-glycoprotein, of genes coding for isoenzymes of cytochrome P450, CYP3A4, CYP3A5, CYP2D6, and CYP2C19, and of the gene for the chemokine receptor CCR5. We measured concentrations in plasma of the antiretroviral agents efavirenz and nelfinavir by high-performance liquid-chromatography, and measured levels of P-glycoprotein expression, CD4-cell count, and HIV-1 viraemia. FINDINGS: Median drug concentrations in patients with the MDR1 3435 TT, CT, and CC genotypes were at the 30th, 50th, and 75th percentiles, respectively (p=0.0001). In patients with CYP2D6 extensive-metaboliser or poor-metaboliser alleles, median drug concentrations were at percentiles 45 and 62.5, respectively (p=0.04). Patients with the MDR1 TT genotype 6 months after starting treatment had a greater rise in CD4-cell count (257 cells/microL) than patients with the CT (165 cells/microL) and CC (121 cells/microL) genotype (p=0.0048), and the best recovery of naïve CD4-cells. INTERPRETATION:The polymorphism MDR1 3435 C/T predicts immune recovery after initiation of antiretroviral treatment. This finding suggests that P-glycoprotein has an important role in admittance of antiretroviral drugs to restricted compartments in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quand on parle de l'acide lactique (aussi connu sous le nom de lactate) une des premières choses qui vient à l'esprit, c'est son implication en cas d'intense activité musculaire. Sa production pendant une activité physique prolongée est associée avec la sensation de fatigue. Il n'est donc pas étonnant que cette molécule ait été longtemps considérée comme un résidu du métabolisme, possiblement toxique et donc à éliminer. En fait, il a été découvert que le lactate joue un rôle prépondérant dans le métabolisme grâce à son fort potentiel énergétique. Le cerveau, en particulier les neurones qui le composent, est un organe très gourmand en énergie. Récemment, il a été démontré que les astrocytes, cellules du cerveau faisant partie de la famille des cellules gliales, utilisent le glucose pour produire du lactate comme source d'énergie et le distribue aux neurones de manière adaptée à leur activité. Cette découverte a renouvelé l'intérêt scientifique pour le lactate. Aujourd'hui, plusieurs études ont démontré l'implication du lactate dans d'autres fonctions de la physiologie cérébrale. Dans le cadre de notre étude, nous nous sommes intéressés au rapport entre neurones et astrocytes avec une attention particulière pour le rôle du lactate. Nous avons découvert que le lactate possède la capacité de modifier la communication entre les neurones. Nous avons aussi décrypté le mécanisme grâce auquel le lactate agit, qui est basé sur un récepteur présent à la surface des neurones. Cette étude montre une fonction jusque-là insoupçonnée du lactate qui a un fort impact sur la compréhension de la relation entre neurones et astrocytes. - Relatively to its volume, the brain uses a large amount of glucose as energy source. Furthermore, a tight link exists between the level of synaptic activity and the consumption of energy equivalents. Astrocytes have been shown to play a central role in the regulation of this so-called neurometabolic coupling. They are thought to deliver the metabolic substrate lactate to neurons in register to glutamatergic activity. The astrocytic uptake of glutamate, released in the synaptic cleft, is the trigger signal that activates an intracellular cascade of events that leads to the production and release of lactate from astrocytes. The main goal of this thesis work was to obtain detailed information on the metabolic and functional interplay between neurons and astrocytes, in particular on the influence of lactate besides its metabolic effects. To gain access to both spatial and temporal aspects of these dynamic interactions, we used optical microscopy associated with specific fluorescent indicators, as well as electrophysiology. In the first part of this thesis, we show that lactate decreases spontaneous neuronal, activity in a concentration-dependent manner and independently of its metabolism. We further identified a receptor-mediated pathway underlying this modulatory action of lactate. This finding constituted a novel mechanism for the modulation of neuronal transmission by lactate. In the second part, we have undergone a characterization of a new pharmacological tool, a high affinity glutamate transporter inhibitor. The finality of this study was to investigate the detailed pharmacological properties of the compound to optimize its use as a suppressor of glutamate signal from neuron to astrocytes. In conclusion, both studies have implications not only for the understanding of the metabolic cooperation between neurons and astrocytes, but also in the context of the glial modulation of neuronal activity. - Par rapport à son volume, le cerveau utilise une quantité massive de glucose comme source d'énergie. De plus, la consommation d'équivalents énergétiques est étroitement liée au niveau d'activité synaptique. Il a été montré que dans ce couplage neurométabolique, un rôle central est joué par les astrocytes. Ces cellules fournissent le lactate, un substrat métabolique, aux neurones de manière adaptée à leur activité glutamatergique. Plus précisément, le glutamate libéré dans la fente synaptique par les neurones, est récupéré par les astrocytes et déclenche ainsi une cascade d'événements intracellulaires qui conduit à la production et libération de lactate. Les travaux de cette thèse ont visé à étudier la relation métabolique et fonctionnelle entre neurones et astrocytes, avec une attention particulière pour des rôles que pourrait avoir le lactate au-delà de sa fonction métabolique. Pour étudier les aspects spatio-temporels de ces interactions dynamiques, nous avons utilisé à la fois la microscopie optique associée à des indicateurs fluorescents spécifiques, ainsi que l'électrophysiologie. Dans la première partie de cette thèse, nous montrons que le lactate diminue l'activité neuronale spontanée de façon concentration-dépendante et indépendamment de son métabolisme. Nous avons identifié l'implication d'un récepteur neuronal au lactate qui sous-tend ce mécanisme de régulation. La découverte de cette signalisation via le lactate constitue un mode d'interaction supplémentaire et nouveau entre neurones et astrocytes. Dans la deuxième partie, nous avons caractérisé un outil pharmacologique, un inhibiteur des transporteurs du glutamate à haute affinité. Le but de cette étude était d'obtenir un agent pharmacologique capable d'interrompre spécifiquement le signal médié par le glutamate entre neurones et astrocytes pouvant permettre de mieux comprendre leur relation. En conclusion, ces études ont une implication non seulement pour la compréhension de la coopération entre neurones et astrocytes mais aussi dans le contexte de la modulation de l'activité neuronale par les cellules gliales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: An optimal target for glucose control in ICU patients remains unclear. This prospective randomized controlled trial compared the effects on ICU mortality of intensive insulin therapy (IIT) with an intermediate glucose control. METHODS: Adult patients admitted to the 21 participating medico-surgical ICUs were randomized to group 1 (target BG 7.8-10.0 mmol/L) or to group 2 (target BG 4.4-6.1 mmol/L). RESULTS: While the required sample size was 1,750 per group, the trial was stopped early due to a high rate of unintended protocol violations. From 1,101 admissions, the outcomes of 542 patients assigned to group 1 and 536 of group 2 were analysed. The groups were well balanced. BG levels averaged in group 1 8.0 mmol/L (IQR 7.1-9.0) (median of all values) and 7.7 mmol/L (IQR 6.7-8.8) (median of morning BG) versus 6.5 mmol/L (IQR 6.0-7.2) and 6.1 mmol/L (IQR 5.5-6.8) for group 2 (p < 0.0001 for both comparisons). The percentage of patients treated with insulin averaged 66.2 and 96.3%, respectively. Proportion of time spent in target BG was similar, averaging 39.5% and 45.1% (median (IQR) 34.3 (18.5-50.0) and 39.3 (26.2-53.6)%) in the groups 1 and 2, respectively. The rate of hypoglycaemia was higher in the group 2 (8.7%) than in group 1 (2.7%, p < 0.0001). ICU mortality was similar in the two groups (15.3 vs. 17.2%). CONCLUSIONS: In this prematurely stopped and therefore underpowered study, there was a lack of clinical benefit of intensive insulin therapy (target 4.4-6.1 mmol/L), associated with an increased incidence of hypoglycaemia, as compared to a 7.8-10.0 mmol/L target. (ClinicalTrials.gov # NCT00107601, EUDRA-CT Number: 200400391440).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the hepatoportal glucose sensors by portal glucose infusion leads to increased glucose clearance and induction of hypoglycemia. Here, we investigated whether glucagon-like peptide-1 (GLP-1) could modulate the activity of these sensors. Mice were therefore infused with saline (S-mice) or glucose (P-mice) through the portal vein at a rate of 25 mg/kg. min. In P-mice, glucose clearance increased to 67.5 +/- 3.7 mg/kg. min as compared with 24.1 +/- 1.5 mg/kg. min in S-mice, and glycemia decreased from 5.0 +/- 0.1 to 3.3 +/- 0.1 mmol/l at the end of the 3-h infusion period. Coinfusion of GLP-1 with glucose into the portal vein at a rate of 5 pmol/kg. min (P-GLP-1 mice) did not increase the glucose clearance rate (57.4 +/- 5.0 ml/kg. min) and hypoglycemia (3.8 +/- 0.1 mmol/l) observed in P-mice. In contrast, coinfusion of glucose and the GLP-1 receptor antagonist exendin-(9-39) into the portal vein at a rate of 0.5 pmol/kg. min (P-Ex mice) reduced glucose clearance to 36.1 +/- 2.6 ml/kg. min and transiently increased glycemia to 9.2 +/- 0.3 mmol/l at 60 min of infusion before it returned to the fasting level (5.6 +/- 0.3 mmol/l) at 3 h. When glucose and exendin-(9-39) were infused through the portal and femoral veins, respectively, glucose clearance increased to 70.0 +/- 4.6 ml/kg. min and glycemia decreased to 3.1 +/- 0.1 mmol/l, indicating that exendin-(9-39) has an effect only when infused into the portal vein. Finally, portal vein infusion of glucose in GLP-1 receptor(-/-) mice failed to increase the glucose clearance rate (26.7 +/- 2.9 ml/kg. min). Glycemia increased to 8.5 +/- 0.5 mmol/l at 60 min and remained elevated until the end of the glucose infusion (8.2 +/- 0.4 mmol/l). Together, our data show that the GLP-1 receptor is part of the hepatoportal glucose sensor and that basal fasting levels of GLP-1 sufficiently activate the receptor to confer maximum glucose competence to the sensor. These data demonstrate an important extrapancreatic effect of GLP-1 in the control of glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study examines the physiological impact of a glucose load on serum testosterone (T) levels in men with varying glucose tolerance (GT). DESIGN: Cross-sectional study. PATIENTS AND METHODS: 74 men (19-74 years, mean 51·4 ± 1·4 years) underwent a standard 75-g oral glucose tolerance test with blood sampling at 0, 30, 60, 90 and 120 min. Fasting serum glucose, insulin, total T (and calculated free T), LH, SHBG, leptin and cortisol were measured. RESULTS: 57% of the men had normal GT, 30% had impaired GT and 13% had newly diagnosed type 2 diabetes. Glucose ingestion was associated with a 25% decrease in mean T levels (delta = -4·2 ± 0·3 nm, P < 0·0001). T levels remained suppressed at 120 min compared with baseline (13·7 ± 0·6 vs 16·5 ± 0·7 nm, P < 0·0001) and did not differ across GT or BMI. Of the 66 men with normal T levels at baseline, 10 (15%) had levels that decreased to the hypogonadal range (<9·7 nm) at one or more time points. SHBG, LH and cortisol levels were unchanged. Leptin levels decreased from baseline at all time points (P < 0·0001). CONCLUSIONS: Glucose ingestion induces a significant reduction in total and free T levels in men, which is similar across the spectrum of glucose tolerance. This decrease in T appears to be because of a direct testicular defect, but the absence of compensatory changes in LH suggests an additional central component. Men found to have low nonfasting T levels should be re-evaluated in the fasting state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Bariatric surgery markedly improves glucose homeostasis in patients with type 2 diabetes even before any significant weight loss is achieved. Procedures that involve bypassing the proximal small bowel, such as Roux-en-Y gastric bypass (RYGBP), are more efficient than gastric restriction procedures such as gastric banding (GB). OBJECTIVE: To evaluate the effects of RYGBP and GB on postprandial glucose kinetics and gastro-intestinal hormone secretion after an oral glucose load. METHODS AND PROCEDURES: This study was a cross-sectional comparison among non-diabetic, weight-stable women who had undergone RYGBP (n = 8) between 9 and 48 months earlier or GB (n = 6) from 25 to 85 months earlier, and weight- and age-matched control subjects (n = 8). The women were studied over 4 h following ingestion of an oral glucose load. Total glucose and meal glucose kinetics were assessed using glucose tracers and plasma insulin, and gut hormone concentrations were simultaneously monitored. RESULTS: Patients who had undergone RYGBP showed a a more rapid appearance of exogenous glucose in the systemic circulation and a shorter duration of postprandial hyperglycemia than patients who had undergone GB and C. The response in RYGBP patients was characterized by early and accentuated insulin response, enhanced postprandial levels of glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY), and greater postprandial suppression of ghrelin. DISCUSSION: These findings indicate that RYGBP is associated with alterations in glucose kinetics and glucoregulatory hormone secretion. These alterations are probably secondary to the anatomic rearrangement of the foregut, given the fact that they are not observed after GB. Increased PYY and GLP-1 concentrations and enhanced ghrelin suppression are compatible with reduced food intake after RYGBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the relative importance of increased lactate production as opposed to decreased utilization in hyperlactatemic patients, as well as their relation to glucose metabolism. DESIGN: Prospective observational study. SETTING: Surgical intensive care unit of a university hospital. PATIENTS: Seven patients with severe sepsis or septic shock, seven patients with cardiogenic shock, and seven healthy volunteers. INTERVENTIONS: C-labeled sodium lactate was infused at 10 micromol/kg/min and then at 20 micromol/kg/min over 120 mins each. H-labeled glucose was infused throughout. MEASUREMENTS AND MAIN RESULTS: Baseline arterial lactate was higher in septic (3.2 +/- 2.6) and cardiogenic shock patients (2.8 +/- 0.4) than in healthy volunteers (0.9 +/- 0.20 mmol/L, p < .05). Lactate clearance, computed using pharmacokinetic calculations, was similar in septic, cardiogenic shock, and controls, respectively: 10.8 +/- 5.4, 9.6 +/- 2.1, and 12.0 +/- 2.6 mL/kg/min. Endogenous lactate production was determined as the initial lactate concentration multiplied by lactate clearance. It was markedly enhanced in the patients (septic 26.2 +/- 10.5; cardiogenic shock 26.6 +/- 5.1) compared with controls (11.2 +/- 2.7 micromol/kg/min, p < .01). C-lactate oxidation (septic 54 +/- 25; cardiogenic shock 43 +/- 16; controls 65 +/- 15% of a lactate load of 10 micromol/kg/min) and transformation of C-lactate into C-glucose were not different (respectively, 15 +/- 15, 9 +/- 18, and 10 +/- 7%). Endogenous glucose production was markedly increased in the patients (septic 14.8 +/- 1.8; cardiogenic shock 15.0 +/- 1.5) compared with controls (7.2 +/- 1.1 micromol/kg/min, p < .01) and was not influenced by lactate infusion. CONCLUSIONS: In patients suffering from septic or cardiogenic shock, hyperlactatemia was mainly related to increased production, whereas lactate clearance was similar to healthy subjects. Increased lactate production was concomitant to hyperglycemia and increased glucose turnover, suggesting that the latter substantially influences lactate metabolism during critical illness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E(2) (PGE(2) ) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole-exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE(2) , but unlike HPGD-deficient patients, also excreted considerable quantities of the PGE(2) metabolite, PGE-M. Clinical differences between the two groups were also identified, notably that SLCO2A1-deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity. Hum Mutat 33:1175-1181, 2012. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidative and nonoxidative glucose metabolism represent the two major mechanisms of the utilization of a glucose load. Eight normal subjects were administered oral loads of 50, 100 and 150 g glucose and gas exchange measurements were performed for eight hours by means of computerized continuous indirect calorimetry. The glycemic peaks were almost identical with all three doses with a rise to between 141 and 147 mg/dl at 60 min. The fall back to basal level was reached later with the high than with the low glucose doses. The glucose oxidation rate rose to values between 223 and 253 mg/min after the three glucose doses, but while falling immediately after the peak at 120 min following the 50 g load, the glucose oxidation rate remained at its maximum rate until 210 min for the 100 g glucose load and plateaued up to 270 min for the 150 g glucose dose. The oxidation rates then fell gradually to reach basal levels at 270, 330 and 420 min according to the increasing size of the load. Altogether 55 +/- 3 g glucose were oxidized during the 8 hours following the 50 g glucose load, 75 +/- 3 g after the 100 g load and 80 +/- 5 g after the 150 g load. The nonoxidative glucose disposal, which corresponds essentially to glucose storage, varied according to the size of the glucose load, with uptakes of 20 +/- 1, 60 +/- 1 and 110 +/- 1 g glucose 180 min after the 50, 100 and 150 g glucose loads respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCT2 is the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate. It is suggested that MCT2 is upregulated to meet enhanced energy demands after modifications in synaptic transmission. Brain-derived neurotrophic factor (BDNF), a promoter of synaptic plasticity, significantly increased MCT2 protein expression in cultured cortical neurons (as shown by immunocytochemistry and western blot) through a translational regulation at the synaptic level. Brain-derived neurotrophic factor can cause translational activation through different signaling pathways. Western blot analyses showed that p44/p42 mitogen-activated protein kinase (MAPK), Akt, and S6 were strongly phosphorylated on BDNF treatment. To determine by which signal transduction pathway(s) BDNF mediates its upregulation of MCT2 protein expression, the effect of specific inhibitors for p38 MAPK, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), p44/p42 MAPK (ERK), and Janus kinase 2 (JAK2) was evaluated. It could be observed that the BDNF-induced increase in MCT2 protein expression was almost completely blocked by all inhibitors, except for JAK2. These data indicate that BDNF induces an increase in neuronal MCT2 protein expression by a mechanism involving a concomitant stimulation of PI3K/Akt/mTOR/S6, p38 MAPK, and p44/p42 MAPK. Moreover, our observations suggest that changes in MCT2 expression could participate in the process of synaptic plasticity induced by BDNF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoglycaemia is a major cause of neonatal morbidity and may induce long-term developmental sequelae. Clinical signs of hypoglycaemia in neonatal infants are unspecific or even absent, and therefore, precise and accurate methods for the assessment of glycaemia are needed. Glycaemia measurement in newborns has some particularities like a very low limit of normal glucose concentration compared to adults and a large range of normal haematocrit values. Many bedside point-of-care testing (POCT) systems are available, but literature about their accuracy in newborn infants is scarce and not very convincing. In this retrospective study, we identified over a 1-year study period 1,324 paired glycaemia results, one obtained at bedside with one of three different POCT systems (Elite? XL, Ascensia? Contour? and ABL 735) and the other in the central laboratory of the hospital with the hexokinase reference method. All three POCT systems tended to overestimate glycaemia values, and none of them fulfilled the ISO 15197 accuracy criteria. The Elite XL appeared to be more appropriate than Contour to detect hypoglycaemia, however with a low specificity. Contour additionally showed an important inaccuracy with increasing haematocrit. The bench analyzer ABL 735 was the most accurate of the three tested POCT systems. Both of the tested handheld glucometers have important drawbacks in their use as screening tools for hypoglycaemia in newborn infants. ABL 735 could be a valuable alternative, but the blood volume needed is more than 15 times higher than for handheld glucometers. Before daily use in the newborn population, careful clinical evaluation of each new POCT system for glucose measurement is of utmost importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Limited information is available on the quantitative relationship between family history and the corresponding underlying traits. We analyzed these associations for blood pressure, fasting blood glucose, and cholesterol levels. Methods: Data were obtained from 6,102 Caucasian participants (2,903 men and 3,199 women) aged 35-75 years using a population-based cross-sectional survey in Switzerland. Cardiovascular disease risk factors were measured, and the corresponding family history was self-reported using a structured questionnaire. Results: The prevalence of a positive family history (in first-degree relatives) was 39.6% for hypertension, 22.3% for diabetes, and 29.0% for hypercholesterolemia. Family history was not known for at least one family member in 41.8% of participants for hypertension, 14.4% for diabetes, and 50.2% for hypercholesterolemia. A positive family history was strongly associated with higher levels of the corresponding trait, but not with the other traits. Participants who reported not to know their family history of hypertension had a higher systolic blood pressure than participants with a negative history. Sibling histories had higher positive predictive values than parental histories. The ability to discriminate, calibrate, and reclassify was best for the family history of hypertension. Conclusions: Family history of hypertension, diabetes, and hypercholesterolemia was strongly associated with the corresponding dichotomized and continuous phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT2 belongs to a large family of membrane proteins involved in the transport of lactate, pyruvate and ketone bodies. Although its expression in rodent brain has been well documented, the presence of MCT2 in the human brain has been questioned on the basis of low mRNA abundance. In this study, the distribution of the monocarboxylate transporter MCT2 has been investigated in the cortex of normal adult human brain using an immunohistochemical approach. Widespread neuropil staining in all cortical layers was observed by light microscopy. Such a distribution was very similar in three different cortical areas investigated. At the cellular level, the expression of MCT2 could be observed in a large number of neurons, in fibers both in grey and white matter, as well as in some astrocytes, mostly localized in layer I and in the white matter. Double staining experiments combined with confocal microscopy confirmed the neuronal expression but also suggested a preferential postsynaptic localization of synaptic MCT2 expression. A few astrocytes in the grey matter appeared to exhibit MCT2 labelling but at low levels. Electron microscopy revealed strong MCT2 expression at asymmetric synapses in the postsynaptic density and also within the spine head but not in the presynaptic terminal. These data not only demonstrate neuronal MCT2 expression in human, but since a portion of it exhibits a distinct synaptic localization, it further supports a putative role for MCT2 in adjustment of energy supply to levels of activity.