218 resultados para GNRH AGONIST
Resumo:
The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons.
Resumo:
The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7-day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2) receptor agonist [NPY(13-36), 300 nm]. This effect was sensitive to the presence of the selective Y(2) receptor antagonist (BIIE0246, 1 microm), but was not affected by addition of TrkB-Fc or by a neutralizing antibody against brain-derived neurotrophic factor (BDNF). Moreover, addition of a Y(1) receptor antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures there was an up-regulation of neuronal TrkB immunoreactivity, as well as the presence of BDNF-immunoreactive microglial cells at sites of injury. Thus, an increase of AMPA-receptor mediated neurodegeneration, in the mouse hippocampus, was prevented by neuroprotective pathways activated by NPY receptors (Y(1) and Y(2)), which can be affected by BDNF released by microglia and neurons.
Resumo:
Cardiac ventricular morphogenesis is a key developmental stage during which the ventricles grow considerably in size, but the transcriptional pathways controlling this process remains poorly understood. 14-3-3_ is a member of a conserved protein family that regulates a wide range of processes such as transcription, apoptosis and proliferation by binding to the phospho-serine/threonine residues of its target proteins. We found that deletion of the Ywhae gene (encoding 14-3-3_) in mice leads to abnormal ventricular morphogenesis and an embryonic cardiomyopathy (Cieslik KA et al, Circ. Res. 2008, abstract). Interestingly, we recently showed in cultured cells that the Ywhae gene is regulated directly by peroxisome proliferator-activated receptor _ (PPAR_) (Brunelli L et al, Circ. Res. 2007), a ligand-inducible nuclear receptor that controls energy metabolism and development. Postnatal cardiac-specific deletion of the Ppard gene in mice causes a lethal dilated cardiomyopathy, but it is still unknown whether PPAR_ regulates genes involved in heart development. We hypothesized that the expression of the Ywhae gene is responsive to PPAR_ during heart development. We confirmed that PPAR_ is expressed in the heart during development, and found higher expression at E10.5 compared to later gestational ages. We showed by immunofluorescence that a PPAR_ agonist (50 _M L-165,041 for 24 hr) upregulates 14-3-3_ in primary cardiomyocytes. We showed that when P19CL6 cells are driven towards cardiomyocyte lineage by dimethyl sulfoxide (DMSO), 14-3-3_ levels increase 4-fold, while L-165,041 treatment increases levels by an additional 50%. Based on previous work in mice (Leibowitz MD et al, FEBS Lett. 2000; Letavernier E et al, J. Am. Soc. Nephrol. 2005), we tested the response of Ywhae to PPAR_ in vivo . We fed 30 mg/kg/day L-165,041 to 14-3-3__/_ adult pregnant mice for 3 days starting at E9.5 and assessed Ywhae mRNA levels in embryonic hearts at E12.5. Baseline mRNA levels in Ywhae_/_ hearts were double that of Ywhae_/ hearts, while L-165,041 upregulated Ywhae mRNA levels in both Ywhae_/_ and Ywhae_/ hearts by 65%. These results indicate that Ywhae responds to PPAR_ in vivo, and suggest that PPAR_ regulates Ywhae during ventricular morphogenesis.
Resumo:
BACKGROUND: Because of denervation supersensitivity, a miotic pupil in a sympathetically-denervated eye dilates in response to a dilute or weak alpha-1-agonist drug. A reversal of anisocoria after topical apraclonidine is considered as a positive test result that diagnoses a unilateral Horner syndrome. HISTORY AND SIGNS: Two women aged 34 and 46 years with a cocaine-confirmed oculosympathetic defect (Horner syndrome) were tested with 1 % topical apraclonidine on separate days. THERAPY AND OUTCOME: In one patient, her miotic Horner pupil dilated marginally but not enough to reverse the baseline anisocoria. Additionally, the upper lid on the same side retracted. There was no discernable effect of apraclonidine on the normal, contralateral eye. In the second patient, there was no pupillary response to apraclonidine but there was resolution of her ptosis. CONCLUSIONS: Neither patient demonstrated a reversal of anisocoria, the current criterion for diagnosing a Horner syndrome using apraclonidine. Thus, these two patients with an established oculosympathetic defect were said to have a "negative test" for Horner syndrome. Yet both women showed subtle pupil and/or lid changes in response to apraclonidine that were consistent with sympathetic denervation supersensitivity. Reversal of anisocoria following topical apraclonidine does not occur in all patients with a unilateral oculosympathetic defect and more specific parameters for defining a positive test result might optimize apraclonidine's utility as a diagnostic test for Horner syndrome
Resumo:
There is little information on how neuropeptide Y (NPY) proteolysis by peptidases occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive forms and also because the factors affecting the expression of these enzymes have been poorly studied. In the present study, LC-MS/MS was used to identify and quantify NPY fragments resulting from peptidolytic cleavage of NPY(1-36) upon incubation with human serum. Kinetic studies indicated that NPY(1-36) is rapidly cleaved in serum into 3 main fragments with the following order of efficacy: NPY(3-36) >> NPY(3-35) > NPY(2-36). Trace amounts of additional NPY forms were identified by accurate mass spectrometry. Specific inhibitors of dipeptidyl peptidase IV, kallikrein, and aminopeptidase P prevented the production of NPY(3-36), NPY(3-35), and NPY(2-36), respectively. Plasma kallikrein at physiological concentrations converted NPY(3-36) into NPY(3-35). Receptor binding assays revealed that NPY(3-35) is unable to bind to NPY Y1, Y2, and Y5 receptors; thus NPY(3-35) may represent the major metabolic clearance product of the Y2/Y5 agonist, NPY(3-36).
Resumo:
Mutations of G protein-coupled receptors (GPCR) can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis, others occur spontaneously in human diseases. The alpha(1B)adrenoceptor was the first GPCR in which point mutations were shown to trigger receptor activation. This article briefly summarizes some of the findings reported in the last several years on constitutive activity of the alpha(1)adrenoceptor subtypes, the location where mutations have been found in the receptors, the spontaneous activity of native receptors in recombinant as well as physiological systems. In addition, it will highlight how the analysis of the pharmacological and molecular properties of the constitutively active adrenoceptor mutants provided an important contribution to our understanding of the molecular mechanisms underlying the mechanism of receptor activation and inverse agonism.
Resumo:
Glycerol, a product of adipose tissue lipolysis, is an important substrate for hepatic glucose synthesis. However, little is known about the regulation of hepatic glycerol metabolism. Here we show that several genes involved in the hepatic metabolism of glycerol, i.e., cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase (GPDH), glycerol kinase, and glycerol transporters aquaporin 3 and 9, are upregulated by fasting in wild-type mice but not in mice lacking PPARalpha. Furthermore, expression of these genes was induced by the PPARalpha agonist Wy14643 in wild-type but not PPARalpha-null mice. In adipocytes, which express high levels of PPARgamma, expression of cytosolic GPDH was enhanced by PPARgamma and beta/delta agonists, while expression was decreased in PPARgamma(+/-) and PPARbeta/delta(-/-) mice. Transactivation, gel shift, and chromatin immunoprecipitation experiments demonstrated that cytosolic GPDH is a direct PPAR target gene. In line with a stimulating role of PPARalpha in hepatic glycerol utilization, administration of synthetic PPARalpha agonists in mice and humans decreased plasma glycerol. Finally, hepatic glucose production was decreased in PPARalpha-null mice simultaneously fasted and exposed to Wy14643, suggesting that the stimulatory effect of PPARalpha on gluconeogenic gene expression was translated at the functional level. Overall, these data indicate that PPARalpha directly governs glycerol metabolism in liver, whereas PPARgamma regulates glycerol metabolism in adipose tissue.
Resumo:
We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.
Resumo:
BACKGROUND/AIMS: Endocrine features of polycystic ovary syndrome (PCOS) include altered ovarian steroidogenesis, hyperinsulinemia and abnormal luteinizing hormone (LH) secretion. This study was undertaken to further evaluate the role of insulin to modulate LH secretion in lean PCOS patients with normal insulin sensitivity and normal volunteers. METHODS: The study was performed in five nonobese patients diagnosed with PCOS on the basis of amenorrhea and a polycystic morphology at ovarian ultrasound, and 5 normal controls in early to mid-follicular phase and matched for weight and age. All subjects were phenotyped, and then admitted for 12 h of frequent (q 10') blood sampling on two separate occasions, once for a baseline study and the other time for a hyperinsulinemic and euglycemic clamp study. LH was measured in samples obtained throughout each admission in order to perform LH pulse analysis. RESULTS: Baseline LH secretion in PCOS subjects was significantly different from controls: they had higher LH levels, higher LH/FSH ratios as well as a faster LH pulse frequency than normal women. Insulin administration did not affect the pattern of LH secretion of PCOS patients, whereas it significantly increased the LH pulse frequency while decreasing the LH interpulse intervals in the controls. CONCLUSIONS: These data confirm that an abnormal pattern of LH secretion characteristic of PCOS can be observed in lean patients, and appears independent of peripheral insulin levels. Furthermore, our results in lean controls provide the first direct evidence that peripheral insulin can modulate the activity of hypothalamic gonadotropin-releasing hormone (GnRH) neurons in the human.
Resumo:
L'ectodysplasine Al (EDA1 ou EDA), un ligand de la famille du TNF, et son récepteur EDAR favorisent le développement des poils, des dents et de plusieurs types de glandes. Chez l'humain, une déficience en EDA cause une dysplasie ectodermique liée à l'X, caractérisée par la genèse défectueuse des phanères. Les souris Tabby, déficientes en Eda, présentent des symptômes similaires. Nous démontrons que les souris Tabby sont en moyenne 7% plus légères que les contrôles au moment du sevrage. Ce phénotype ne dépend pas du génotype des petits, mais exclusivement de celui de la mère, suggérant que l'absence d'EDA perturbe la fonction mammaire. La glande mammaire se développe en plusieurs étapes, principalement à la puberté et pendant la grossesse. Nous avons généré des anticorps pour activer ou inhiber la signalisation d'EDAR. Les anticorps agonistes corrigent le développement de souris ou de chiens déficients en EDA, alors que les antagonistes provoquent une dysplasie ectodermique chez les souris saines. L'exposition répétée de souris Tabby aux anticorps agonistes après le sevrage accroît la taille et la fonction des glandes sébacées, démonstration pharmacologique qu'EDA contrôle l'homéostasie de la glande sébacée adulte. Ces outils seront utiles pour étudier la fonction d'EDA aux diverses étapes du développement de la glande mammaire. Fc-EDAl, un stimulateur d'EDAR, est en phase d'évaluation clinique. Nous avons montré que les structures dépendantes d'EDA qui se forment à différentes étapes du développement répondent à l'action du Fc-EDAl dans des fenêtres temporelles étroites ou larges. De plus, certaines structures peuvent être induites plusieurs jours après le début naturel de leur formation. Alors que la plupart des structures se forment suite à un seul jour d'activation d'EDAR, d'autre demandent un temps de stimulation plus long. La formation des dents est régulée par des signaux activateurs et inhibiteurs. Une forte stimulation d'EDAR spécifiquement appliquée aux deux premières molaires induit des signaux négatifs qui avortent la formation de la troisième molaire, alors qu'une forte stimulation donnée à la troisième molaire la rend hypertrophique tout en induisant parfois une quatrième molaire jamais observée chez les souris de type sauvage ou Tabby. EDA est donc un activateur important de la formation dentaire. Pris dans leur ensemble, ces résultats ont des implications pour la thérapie des dysplasies ectodermiques. - The TNF family ligand Ectodysplasin Al (EDA1 or EDA) and its receptor ED AR regulate embryonic development of hair, teeth and several types of glands. In humans, EDA mutations cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by defective development of skin appendages. £da-deficient (Tabby) mice suffer from similar defects. We observed that Tabby pups at weaning were on average 7% smaller than WT controls, a phenotype that was curiously not linked to the genotype of pups, but to that of mothers, suggesting decreased mammary gland function in the absence of EDA. Mammary glands develop in several steps, most of which are post-natal. We generated monoclonal antibodies to block or activate EDAR signaling. Agonist antibodies rescued developmental defects when administered timely in £cfo-deficient mice and dogs, whereas blocking antibodies induced ectodermal dysplasia in WT mice. Agonist antibodies administered after weaning in £da-deficient mice for several months markedly increased both size and function of sebaceous glands, providing the first demonstration that pharmacological activation of the EDAR pathway in adults can correct important aspects of the dry skin phenotype. This also highlights a role for EDA1 in the homeostasis of adult sebaceous glands. These tools will be useful to study the function of EDA 1 at different stages of mammary gland development. Another EDAR agonist, Fc-EDAl, is currently evaluated in clinical trials. We found that EDA 1-dependent structures forming at different time points during development can respond to Fc-EDAl during time response windows that are narrow or wide. Also, some structures can be triggered up to several days after their normal time of induction. While most structures could be rescued by a single day of EDAR signaling, others required longer exposure times to form. Tooth formation is regulated by activating and inhibitory signals that impact one on the other. When strong EDAR signals were specifically given to the first two molars, overwhelming inhibitory signals completely inhibited formation of the third molar. In contrast, strong signals specifically given to the third molar induced hypertrophy of the later with occasional appearance of a fourth molar never observed in WT or £da-deficient mice. This clearly positions EDA as an important activating signal in tooth formation. Taken together, these results have implications for the therapy of ectodermal dysplasias.
Resumo:
STUDY OBJECTIVES: Sodium oxybate (SO) is a GABA(B) agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. DESIGN: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABA(B) receptor agonist, to assess the role of GABA(B) receptors in the SO response. MEASUREMENTS AND RESULTS: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. CONCLUSIONS: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABA(B) receptors in REMS generation. CITATION: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071-1084.
Resumo:
Drugs of abuse, such as psychostimulants and opiates, are generally considered as exerting their locomotor and rewarding effects through an increased dopaminergic transmission in the nucleus accumbens. Noradrenergic transmission may also be implicated because most psychostimulants increase norepinephrine (NE) release, and numerous studies have indicated interactions between noradrenergic and dopaminergic neurons through alpha1-adrenergic receptors. However, analysis of the effects of psychostimulants after either destruction of noradrenergic neurons or pharmacological blockade of alpha1-adrenergic receptors led to conflicting results. Here we show that the locomotor hyperactivities induced by d-amphetamine (1-3 mg/kg), cocaine (5-20 mg/kg), or morphine (5-10 mg/kg) in mice lacking the alpha1b subtype of adrenergic receptors were dramatically decreased when compared with wild-type littermates. Moreover, behavioral sensitizations induced by d-amphetamine (1-2 mg/kg), cocaine (5-15 mg/kg), or morphine (7.5 mg/kg) were also decreased in knock-out mice when compared with wild-type. Ruling out a neurological deficit in knock-out mice, both strains reacted similarly to novelty, to intraperitoneal saline, or to the administration of scopolamine (1 mg/kg), an anti-muscarinic agent. Finally, rewarding properties could not be observed in knock-out mice in an oral preference test (cocaine and morphine) and conditioned place preference (morphine) paradigm. Because catecholamine tissue levels, autoradiography of D1 and D2 dopaminergic receptors, and of dopamine reuptake sites and locomotor response to a D1 agonist showed that basal dopaminergic transmission was similar in knock-out and wild-type mice, our data indicate a critical role of alpha1b-adrenergic receptors and noradrenergic transmission in the vulnerability to addiction.
Resumo:
In a previous study, we demonstrated that the new beta-adrenoceptor agonist Ro 16-8714 possesses thermogenic property in normal male volunteers. The aim of the present study was to compare the metabolic response of lean vs obese individuals to a similar dose of this compound. Following an overnight fast, Ro 16-8714 (0.17 mg/kg fat free mass) or a placebo was given per os to six normal-weight subjects and to six moderately obese subjects. The rate of energy expenditure (EE) and the substrate utilization were determined by indirect calorimetry (hood system) before and for 6 h following the drug administration. Heart rate and blood pressure as well as plasma glucose, insulin and free fatty acid (FFA) concentrations were also measured at regular intervals throughout the study. The increment relative to base-line (mean +/- s.e.m.) in EE was similar in the two groups and averaged 4.0 +/- 1.4 per cent and 12.2 +/- 1.4 per cent with placebo and with Ro 16-8714 respectively in lean subjects, whereas the values reached 3.5 +/- 1.2 per cent and 14.4 +/- 2.0 per cent in obese subjects. Heart rate, systolic blood pressure, insulin and FFA were increased without any significant difference between the two groups. This study shows that Ro 16-8714 is a potent thermogenic agent both in normal and obese subjects.
Resumo:
The alpha1B-adrenergic receptor (alpha1BAR), its truncated mutant T368, different G protein-coupled receptor kinases (GRK) and arrestin proteins were transiently expressed in COS-7 or HEK293 cells alone and/or in various combinations. Coexpression of beta-adrenergic receptor kinase (betaARK) 1 (GRK2) or 2 (GRK3) could increase epinephrine-induced phosphorylation of the wild type alpha1BAR above basal as compared to that of the receptor expressed alone. On the other hand, overexpression of the dominant negative betaARK (K220R) mutant impaired agonist-induced phosphorylation of the receptor. Overexpression of GRK6 could also increase epinephrine-induced phosphorylation of the receptor, whereas GRK5 enhanced basal but not agonist-induced phosphorylation of the alpha1BAR. Increasing coexpression of betaARK1 or betaARK2 resulted in the progressive attenuation of the alpha1BAR-mediated response on polyphosphoinositide (PI) hydrolysis. However, coexpression of betaARK1 or 2 at low levels did not significantly impair the PI response mediated by the truncated alpha1BAR mutant T368, lacking the C terminus, which is involved in agonist-induced desensitization and phosphorylation of the receptor. Similar attenuation of the receptor-mediated PI response was also observed for the wild type alpha1BAR, but not for its truncated mutant, when the receptor was coexpressed with beta-arrestin 1 or beta-arrestin 2. Despite their pronounced effect on phosphorylation of the alpha1BAR, overexpression of GRK5 or GRK6 did not affect the receptor-mediated response. In conclusion, our results provide the first evidence that betaARK1 and 2 as well as arrestin proteins might be involved in agonist-induced regulation of the alpha1BAR. They also identify the alpha1BAR as a potential phosphorylation substrate of GRK5 and GRK6. However, the physiological implications of GRK5- and GRK6-mediated phosphorylation of the alpha1BAR remain to be elucidated.
Resumo:
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to beta(2)-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by beta(2)-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.