206 resultados para Family background
Resumo:
BACKGROUND: There is little information regarding the determinants and trends of the prevalence of low cardiovascular risk factor (RF) profile in the general population. The aim of this study was to assess the prevalence and trends of low RF profile in the Swiss population according to different definitions. METHODS: Population-based cross-sectional studies conducted in 1984-1986 (N=3300), 1988-1989 (N=3331), 1992-1993 (N=3133) and 2003-2006 (N=6170) and restricted to age group 35-75 years. Seven different definitions of low RF profile were used to assess determinants, while two definitions were used to assess trends. RESULTS: Prevalence of low RF profile varied between 6.5% (95% confidence interval: 5.9-7.1) and 9.7% (9.0-10.5) depending on the definition used. This prevalence was higher than in other countries. Irrespective of the definition used, the prevalence of low RF profile was higher in women and in physically active participants, and decreased with increasing age or in the presence of a family history of cardiovascular disease. Using one definition, the prevalence of low RF profile increased from 3.8% (3.1-4.5) in 1984-1986 to 6.7% (6.1-7.3) in 2003-2006; using another definition, the results were 5.9% (5.1-6.8) and 9.7% (9.0-10.5), respectively. CONCLUSION: Switzerland is characterized by a high and increasing prevalence of low RF profile within the age group 35 to 75, irrespective of the criteria used. This high prevalence might partly explain the low and decreasing trend in cardiovascular mortality rates.
Resumo:
Abstract: The genesis of the cardiac action potential, which accounts for the cardiac contraction, is due to the sodium current INa mediated by the voltage-gated sodium channel Nav1.5. Several cardiac arrhythmias such as the Brugada syndrome are known te be caused by mutations in SCN5A, the gene encoding Nav1.5. Studies of these mutations allowed a better understanding of biophysical and functional properties of Nav1.5. However, only few investigations have been performed in order to understand the regulation of Nav1.5. During my thesis, I investigated different mechanisms of regulation of Nav1.5 using a heterologous expression system, HEK293 cells, coupled with a technique of sodium current recording: the patch clamp in whole cell configuration. In previous studies it has been shown that an enzyme of the Nedd4 family (Nedd4-2) regulates an epithelial sodium channel via the interaction with PY-motifs present in the latter. Interestingly, Nav1.5 contains a similar PY-motif, which motivated us to study the role of Nedd4-2 expressed in heart for the regulation of Nav1.5. In a second study, we investigated the implication of two Nav1.5 mutants, which were either less functional or net functional (Nav1.5 R535X and Nav1.5 L325R respectively) implied in the genesis of the Brugada syndrome by fever. Our results established two mechanisms implied in Nav1.5 regulation. The first one implies that following the interaction between the PY-motif of Nav1.5 and Nedd4- 2 Nav1.5 is ubiquitinated by Nedd4-2. This ubiquitination leads to the internalization of Nav1 .5. The second mechanism is a phenomenon called the "dominant negative" effect of Nav1.5 L325R on Nay1.5 where the decrease of 'Na is potentially due to the retention of Nav1.5 by Nav1.5 L325R in an undefined intracellular compartment. These studies defined two mechanisms of Nav1.5 regulation, which could play an important role for the genesis of cardiac arrhythmias where molecular processes are still poorly understood. Résumé La genèse du potentiel d'action cardiaque, permettant la contraction cardiaque, est due au courant sodique INa issu des canaux sodiques cardiaques dépendants du voltage Nav1.5. Nombreuses arythmies cardiaques telles que le syndrome de Brugada sont connues pour être liées à des mutations du gène SCN5A, codant pour Nav1.5. L'étude de ces mutations a permis une meilleure compréhension des propriétés structurelles et fonctionnelles de Nav1.5 et leurs implications dans la genèse de ces pathologies. Néanmoins peu d'études ont été menées afin de comprendre les mécanismes de régulation de Nav1.5. Mon travail de thèse a consisté à étudier des mécanismes de régulation de Nav1.5 en utilisant un système d'expression hétérologue, les cellules HEK293, couplé à une technique d'enregistrement des courants sodiques, le "patch clamp" en configuration cellule entière. La présence sur Nav1.5 d'un motif-PY similaire à ceux nécessaires pour la régulation d'un canal épithélial sodique par une enzyme de la famille de Nedd4, nous a amenée à étudier le rôle de ces ubiquitine-ligases, en particulier Nedd4-2, dans la régulation de Nav1.5. La seconde étude s'est intéressée aux conséquences de deux mutations de SCN5A codant pour deux mutants peu ou pas fonctionnels (Nav1.5 L325R et Nav1.5 R535X respectivement) retrouvées chez des patients présentant un syndrome de Brugada exacerbé par un état fébrile. Nos résultats ont permis d'établir deux mécanismes de régulation de Nav1.5 L'un par Nedd4-2 qui implique rubiquitination de Nav1.5 par cette ligase suite à l'interaction entre le motif-PY de Nav1.5 et Nedd4-2. Cette modification déclenche l'internalisation du canal impliquée dans la diminution d'INa. Le second mécanisme quant à lui est un effet "dominant négatif" de Nav1.5 L325R sur Nav1.5 aboutissant à une diminution d'INa suite à la séquestration intracellulaire potentielle de Nav1.5 par Nav1.5 L325R. Ces études ont mis en évidence deux mécanismes de régulation de Nav1.5 pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des arythmies cardiaques dont les processus moléculaires au sein des cardiomyocytes, impliquant des modifications du courant sodiques, sont encore mal compris. Résumé destiné à un large public La dépolarisation électrique de la membrane des cellules cardiaques permet la contraction du coeur. La génèse de cette activité électrique est due au courant sodique issu d'un type de canal à sodium situé dans la membrane des cellules cardiaques. De nombreuses pathologies provoquant des troubles du rythme cardiaque sont issues de mutations du gène qui code pour ce canal à sodium. Ces canaux mutants, entrainant diverses pathologies cardiaques telles que le syndrome de Brugada, ont été largement étudiées. Néanmoins, peu de travaux ont été réalisés sur les mécanismes de régulation de ce canal à sodium non muté. Mon travail de thèse a consisté à étudier certains des mécanismes de régulation de ce canal à sodium en utilisant une technique permettant l'enregistrement des courants sodiques issus de l'expression de ces canaux à sodium à la membrane de cellules mammifères. La présence sur ce canal à sodium d'une structure spécifique, similaire à celle nécessaire pour la régulation d'un canal épithélial à sodium par une enzyme appelée Nedd4-2, nous a amenée à étudier le rôle de cette enzyme dans la régulation de ce canal à sodium. La seconde étude s'est intéressée aux rôles de deux mutations du gène codant pour ce canal à sodium retrouvées chez des patients présentant un syndrome de Brugada exacerbé par la fièvre. Nos résultats nous ont permis d'établir deux mécanismes de régulation de ce canal à sodium diminuant le courant sodique l'un par l'action de l'enzyme Nedd4-2, suite à son interaction avec ce canal, qui modifie ce canal à sodium (ubiquitination) diminuant de ce fait la densité membranaire du canal. L'autre par un mécanisme suggérant un effet négatif de l'un des canaux mutants sur l'expression à la membrane du canal à sodium non muté. Ces études ont mis en évidence deux mécanismes de régulation de ce canal à sodium pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des troubles du rythme cardiaques dont les mécanismes cellulaires sont encore incompris.
Resumo:
Epidemiological surveillance systems are essential and require efficient collaborations between family doctors and public health services. Such a system has to take into account the increase in the number of health problems to be studied. Information gathered at an individual level should imply decisions at a population level which in turn should impact on the individual patient. Epidemiological surveillance requires a well organized, representative and constantly revised system led by motivated, adequately trained doctors.
Resumo:
Background: Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results: Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions: The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.
Resumo:
Transcription factors of the NF-kappaB/Rel family are important mediators of extracellular signals. Their implication in positive selection of thymocytes is suggested by a defective thymic development in transgenic mice that over-express IkappaB in thymocytes. These mice exhibit an accumulation of an unusually prominent population of TCRhigh/CD4/CD8 double positive cells in the thymus and a dramatic reduction of CD4+ and CD8+ cells in the periphery. The present study addresses the role of NF-kappaB in survival and differentiation processes of maturing thymocytes using IkappaB/bcl-2 and IkappaB/HY double-transgenic mice. Neither the introduction of the anti-apoptosis gene bcl-2 nor the positively selecting background in female HY transgenic mice resulted in a rescue of the maturational defects observed in the thymus of IkappaB transgenic mice. Thus, rather than promoting survival the main role of NF-kappaB/Rel proteins during positive selection of thymocytes appears to be the mediation of differentiation signals.
Resumo:
Alcohol and tobacco consumption are well-recognized risk factors for head and neck cancer (HNC). Evidence suggests that genetic predisposition may also play a role. Only a few epidemiologic studies, however, have considered the relation between HNC risk and family history of HNC and other cancers. We pooled individual-level data across 12 case-control studies including 8,967 HNC cases and 13,627 controls. We obtained pooled odds ratios (OR) using fixed and random effect models and adjusting for potential confounding factors. All statistical tests were two-sided. A family history of HNC in first-degree relatives increased the risk of HNC (OR=1.7, 95% confidence interval, CI, 1.2-2.3). The risk was higher when the affected relative was a sibling (OR=2.2, 95% CI 1.6-3.1) rather than a parent (OR=1.5, 95% CI 1.1-1.8) and for more distal HNC anatomic sites (hypopharynx and larynx). The risk was also higher, or limited to, in subjects exposed to tobacco. The OR rose to 7.2 (95% CI 5.5-9.5) among subjects with family history, who were alcohol and tobacco users. A weak but significant association (OR=1.1, 95% CI 1.0-1.2) emerged for family history of other tobacco-related neoplasms, particularly with laryngeal cancer (OR=1.3, 95% CI 1.1-1.5). No association was observed for family history of nontobacco-related neoplasms and the risk of HNC (OR=1.0, 95% CI 0.9-1.1). Familial factors play a role in the etiology of HNC. In both subjects with and without family history of HNC, avoidance of tobacco and alcohol exposure may be the best way to avoid HNC.
Resumo:
Abstract Background: Extrapulmonary tuberculosis (EPTB) constitutes about 10% to 20% of all cases of tuberculosis in immunocompetent patients and more than 50% of the cases in HIV-positive individuals worldwide. Little information is available on the clonal diversity of Mycobacterium species in Ethiopia from EPTB. Methods: This study was carried out on smear-negative EPTB patients to molecularly characterize Mycobacterium tuberculosis complex strains. A questionnaire, smear staining, culture, deletion typing, and spoligotyping were employed. Results: The proportional distribution of EPTB and isolates did not vary substantially (p > 0.05) amongst the socio-demographic parameters considered in the current investigation. Out of 98 fine needle aspirates processed for culture, 36.7% (36/98) were positive for mycobacterial growth. Further speciation of those culture-positive isolates showed that 88.9% were M. tuberculosis and the remaining could be non-tuberculous mycobacterial species. Spoligotyping revealed 16 clusters out of which 2 were new to the SITVIT database. The most dominant spoligotypes were SIT54, SIT53, and SIT149 in decreasing order. SIT54, SIT134, SIT173, SIT345, SIT357, SIT926, SIT91088, and SIT1580 were reported for the first time in Ethiopia. The family with the highest frequency identified was M. tuberculosis family T1, followed by family 33. Most of the strains belonged to Euro-American (61.4%) and Indo-Oceanic (36.3%) lineages. Conclusions: The present study shows the importance of M. tuberculosis as a major cause of EPTB in the study area. Moreover, the majority of isolates of M. tuberculosis were found in clusters, suggesting the possibility of the existence of recent transmission. This warrants strengthening of the control programs for EPTB in the study area.
Resumo:
Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3(PAR2/+)), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases.
Resumo:
ABSTRACTIn contrast to animals, plants cannot move from their place of birth and, therefore, need to adapt to their particular habitat in order to survive. Thus, plant development is remarkably plastic, making plants an ideal system for the isolation of genes that account for intraspecific natural variation and possibly environmental adaptation. However, to date, this approach mostly identified null alleles and missed mutations with subtle effects. For instance, BREVIS RADIX (BRX) has been isolated as a key regulator of root growth through a naturally occurring loss-of-function allele in the Arabidopsis thaliana accession Uk-1 and is the founding member of a highly-conserved plant-specific gene family.In this work, we show that a strong selective pressure is acting on the BRX gene family and dates back before the monocot-dicot divergence. However, functional diversification is observed mainly in dicotyledon BRX family genes and is correlated with acceleration in the evolutionary rates in the N-terminal regions. Population genetic data revealed that BRX is highly conserved across Arabidopsis accessions and presents signatures of adaptation. Interestingly, a seven amino acid deletion polymorphism in BRX sequence was found in a few accessions, which seems to be responsible for their enhanced primary root growth. Nevertheless, BRX might not only be active in the root, as suggested by its expression in the shoot. Indeed, leaves and cotyledons of brx mutants are significantly smaller than wild- type. This phenotype is a direct consequence of the absence of BRX function in the shoot rather than an indirect effect of an altered root system growth. Interestingly, cotyledons of brx plants reflect the same physiological defects as the root. Moreover, phenotypes in BRX gain-of-function plants, such as epinastic leaves and increased epidermal cell size, could be associated with an increase in leaf brassinosteroid content.Collectively, these results indicate that BRX contributes to local adaptation by ubiquitously regulating plant growth, probably through the modulation of brassinosteroid biosynthesis.RÉSUMÉContrairement à la plupart des animaux, les plantes ne peuvent se mouvoir et doivent ainsi s'adapter à leur environnement pour survivre. Pour cette raison, elles représentent un système idéal pour l'identification de gènes contribuant à la variation naturelle intra- spécifique, ainsi qu'à l'adaptation. Cependant, cette approche a, jusqu'à présent, surtout permis d'isoler des allèles nuls et non des mutations conférant des effets plus subtiles. C'est le cas du gène Β REVIS RADIX (BRX), un régulateur clé de la croissance racinaire, qui a été identifié grâce à un allèle non-fonctionnel présent dans l'accession naturelle d'Arabidopsis thaliana Uk-1. BRX et ses homologues des plantes mono- et dicotylédones forment une famille très conservée et spécifique aux plantes.Dans ce travail, nous démontrons que la famille de gènes BRX est soumise à une forte pression de sélection qui remonte avant la divergence entre mono- et dicotylédones. Cependant, une diversification fonctionnelle a été observée chez les gènes des dicotylédones et corrèle avec une accélération de la vitesse d'évolution dans leur région N- terminale. Une analyse génétique de différentes accessions naturelles d'Arabidopsis a révélé que BRX est hautement conservé et présente des signatures d'adaptation. Remarquablement, un polymorphisme de délétion de sept acides aminés a été détecté dans quelques accessions et a pour conséquence une plus forte croissance de la racine primaire. Néanmoins, il semble que le rôle de BRX ne se limite pas qu'à la racine, comme indiqué par son expression dans les parties aériennes de la plante. En effet, les mutants brx présentent des cotylédons et des feuilles significativement plus petits que le type sauvage, une conséquence directe de l'absence d'activité de BRX dans ces organes. Nous avons aussi noté que les cotylédons des mutants brx, à l'instar des racines, ont une perception altérée de l'auxine et peuvent être complémentés par l'application exogène de brassinostéroïdes. De plus, dans des plantes présentant un gain de fonction BRX, les feuilles sont épinastiques et les cellules de leur épiderme plus grandes. Ces phénotypes sont accompagnés d'une augmentation de la concentration de brassinostéroïdes dans les feuilles. Conjointement, ces résultats démontrent que BRX contribue à une adaptation locale de la plante par la régulation générale de sa croissance, probablement en modulant la biosynthèse des brassinostéroïdes.
Resumo:
BACKGROUND: The Complete Arabidopsis Transcript MicroArray (CATMA) initiative combines the efforts of laboratories in eight European countries 1 to deliver gene-specific sequence tags (GSTs) for the Arabidopsis research community. The CATMA initiative offers the power and flexibility to regularly update the GST collection according to evolving knowledge about the gene repertoire. These GST amplicons can easily be reamplified and shared, subsets can be picked at will to print dedicated arrays, and the GSTs can be cloned and used for other functional studies. This ongoing initiative has already produced approximately 24,000 GSTs that have been made publicly available for spotted microarray printing and RNA interference. RESULTS: GSTs from the CATMA version 2 repertoire (CATMAv2, created in 2002) were mapped onto the gene models from two independent Arabidopsis nuclear genome annotation efforts, TIGR5 and PSB-EuGène, to consolidate a list of genes that were targeted by previously designed CATMA tags. A total of 9,027 gene models were not tagged by any amplified CATMAv2 GST, and 2,533 amplified GSTs were no longer predicted to tag an updated gene model. To validate the efficacy of GST mapping criteria and design rules, the predicted and experimentally observed hybridization characteristics associated to GST features were correlated in transcript profiling datasets obtained with the CATMAv2 microarray, confirming the reliability of this platform. To complete the CATMA repertoire, all 9,027 gene models for which no GST had yet been designed were processed with an adjusted version of the Specific Primer and Amplicon Design Software (SPADS). A total of 5,756 novel GSTs were designed and amplified by PCR from genomic DNA. Together with the pre-existing GST collection, this new addition constitutes the CATMAv3 repertoire. It comprises 30,343 unique amplified sequences that tag 24,202 and 23,009 protein-encoding nuclear gene models in the TAIR6 and EuGène genome annotations, respectively. To cover the remaining untagged genes, we identified 543 additional GSTs using less stringent design criteria and designed 990 sequence tags matching multiple members of gene families (Gene Family Tags or GFTs) to cover any remaining untagged genes. These latter 1,533 features constitute the CATMAv4 addition. CONCLUSION: To update the CATMA GST repertoire, we designed 7,289 additional sequence tags, bringing the total number of tagged TAIR6-annotated Arabidopsis nuclear protein-coding genes to 26,173. This resource is used both for the production of spotted microarrays and the large-scale cloning of hairpin RNA silencing vectors. All information about the resulting updated CATMA repertoire is available through the CATMA database http://www.catma.org.
Resumo:
In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move fi eely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests.
Resumo:
BACKGROUND: Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear. RESULTS: Here we show that deleting β and γENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro. CONCLUSION: Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.
Resumo:
BACKGROUND AND AIM: Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by mutations of the MEFV gene. We analyse the impact of ethnic, environmental and genetic factors on the severity of disease presentation in a large international registry. METHODS: Demographic, genetic and clinical data from validated paediatric FMF patients enrolled in the Eurofever registry were analysed. Three subgroups were considered: (i) patients living in the eastern Mediterranean countries; (ii) patients with an eastern Mediterranean ancestry living in western Europe; (iii) Caucasian patients living in western European countries. A score for disease severity at presentation was elaborated. RESULTS: Since November 2009, 346 FMF paediatric patients were enrolled in the Eurofever registry. The genetic and demographic features (ethnicity, age of onset, age at diagnosis) were similar among eastern Mediterranean patients whether they lived in their countries or western European countries. European patients had a lower frequency of the high penetrance M694V mutation and a significant delay of diagnosis (p<0.002). Patients living in eastern Mediterranean countries had a higher frequency of fever episodes/year and more frequent arthritis, pericarditis, chest pain, abdominal pain and vomiting compared to the other two groups. Multivariate analysis showed that the variables independently associated with severity of disease presentation were country of residence, presence of M694V mutation and positive family history. CONCLUSIONS: Eastern Mediterranean FMF patients have a milder disease phenotype once they migrate to Europe, reflecting the effect of environment on the expression of a monogenic disease.