164 resultados para Drug target systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on measurement of blood concentrations. Maintaining concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. In the last decades computer programs have been developed to assist clinicians in this assignment. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Method: Literature and Internet search was performed to identify software. All programs were tested on common personal computer. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software's characteristics. Numbers of drugs handled vary widely and 8 programs offer the ability to the user to add its own drug model. 10 computer programs are able to compute Bayesian dosage adaptation based on a blood concentration (a posteriori adjustment) while 9 are also able to suggest a priori dosage regimen (prior to any blood concentration measurement), based on individual patient covariates, such as age, gender, weight. Among those applying Bayesian analysis, one uses the non-parametric approach. The top 2 software emerging from this benchmark are MwPharm and TCIWorks. Other programs evaluated have also a good potential but are less sophisticated (e.g. in terms of storage or report generation) or less user-friendly.¦Conclusion: Whereas 2 integrated programs are at the top of the ranked listed, such complex tools would possibly not fit all institutions, and each software tool must be regarded with respect to individual needs of hospitals or clinicians. Interest in computing tool to support therapeutic monitoring is still growing. Although developers put efforts into it the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capacity of data storage and report generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on blood concentrations measurement. Maintaining concentrations within a target range requires pharmacokinetic (PK) and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Methods: Literature and Internet were searched to identify software. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software characteristics. Numbers of drugs handled vary from 2 to more than 180, and integration of different population types is available for some programs. Nevertheless, 8 programs offer the ability to add new drug models based on population PK data. 10 computer tools incorporate Bayesian computation to predict dosage regimen (individual parameters are calculated based on population PK models). All of them are able to compute Bayesian a posteriori dosage adaptation based on a blood concentration while 9 are also able to suggest a priori dosage regimen, only based on individual patient covariates. Among those applying Bayesian analysis, MM-USC*PACK uses a non-parametric approach. The top 2 programs emerging from this benchmark are MwPharm and TCIWorks. Others programs evaluated have also a good potential but are less sophisticated or less user-friendly.¦Conclusions: Whereas 2 software packages are ranked at the top of the list, such complex tools would possibly not fit all institutions, and each program must be regarded with respect to individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Although interest in TDM tools is growing and efforts were put into it in the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capability of data storage and automated report generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion, among the major TFs involved in azole resistance, only UPC2 had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In human pathologies, therapeutic treatments are often limited by the lack of selectivity of drugs and their elevated effective concentrations. Targeting these agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body. Targeting could also improve treatment efficiency by allowing a localized high concentration of the agents. Based on the different behaviors and patterns of expression between diseased and normal cells, strategies for targeting can be explored. For example, receptors, proteases or trans-membrane carriers could be different or differently expressed. Many therapeutic procedures rely on this fact, including photodynamic therapy (PDT). PDT is already used in the treatment of some cancers, of inflammatory diseases and others diseases such as age-related macular degeneration or acne. PDT relies on the activation of a photosensitizer (PS) by visible light which results in the production of cytotoxic reactive oxygen species. In PDT, the general distribution of PS to the whole body leads to generalized photosensitization and poor acceptance of treatments by patients. One way to avoid these effects is to improve the targeting of PSs to diseased tissues using modification of PS with peptides or proteins that will target specific receptors or enzymes. PSs could also be functionalized with non-proteic ligands such as organometalics to achieve targeted and/or combined therapies. Alternatively, PSs could be encapsulated in nanoparticles bearing targeting agents which will decrease concentration of free circulating PS and improve photodynamic efficiency. These different approaches will be discussed in the present review with an emphasis on the use of peptides and proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Poor long-term adherence is an important cause of uncontrolled hypertension. We examined whether monitoring drug adherence with an electronic system improves long-term blood pressure (BP) control in hypertensive patients followed by general practitioners (GPs). METHODS: A pragmatic cluster randomised controlled study was conducted over one year in community pharmacists/GPs' networks randomly assigned either to usual care (UC) where drugs were dispensed as usual, or to intervention (INT) group where drug adherence could be monitored with an electronic system (Medication Event Monitoring System). No therapy change was allowed during the first 2 months in both groups. Thereafter, GPs could modify therapy and use electronic monitors freely in the INT group. The primary outcome was a target office BP<140/90 mmHg. RESULTS: Sixty-eight treated uncontrolled hypertensive patients (UC: 34; INT: 34) were enrolled. Over the 12-month period, the likelihood of reaching the target BP was higher in the INT group compared to the UC group (p<0.05). At 4 months, 38% in the INT group reached the target BP vs. 12% in the UC group (p<0.05), and 21% vs. 9% at 12 months (p: ns). Multivariate analyses, taking account of baseline characteristics, therapy modification during follow-up, and clustering effects by network, indicate that being allocated to the INT group was associated with a greater odds of reaching the target BP at 4 months (p<0.01) and at 12 months (p=0.051). CONCLUSION: GPs monitoring drug adherence in collaboration with pharmacists achieved a better BP control in hypertensive patients, although the impact of monitoring decreased with time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-component systems (TCSs) allow bacteria to monitor diverse environmental cues and to adjust gene expression accordingly at the transcriptional level. It has been recently recognized that prokaryotes also regulate many genes and operons at a posttranscriptional level with the participation of small, noncoding RNAs which serve to control translation initiation and stability of target mRNAs, either directly by establishing antisense interactions or indirectly by antagonizing RNA-binding proteins. Interestingly, the expression of a subset of these small RNAs is regulated by TCSs and in this way, the small RNAs expand the scope of genetic control exerted by TCSs. Here we review the regulatory mechanisms and biological relevance ofa number of small RNAs under TCS control in Gram-negative and -positive bacteria. These regulatory systems govern, for instance, porin-dependent permeability of the outer membrane, quorum-sensing control of pathogenicity, or biocontrol activity. Most likely, this emerging and rapidly expanding field of molecular microbiology will provide more and more examples in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty years ago, the introduction of penicillin, followed by many other antibacterial agents, represented an often underestimated medical revolution. Indeed, until that time, bacterial infections were the prime cause of mortality, especially in children and elderly patients. The discovery of numerous new substances and their development on an industrial scale confronted us with the illusion that bacterial infections were all but vanquished. However, the widespread and sometimes uncontrolled usage of these agents has led to the selection of bacteria resistant to practically all available antibiotics. Bacteria utilize three main resistance strategies: (i) decrease in drug accumulation, (ii) modification of target, and (iii) modification of the antibiotic. Bacteria can decrease drug accumulation either by becoming impermeable to antibiotics, or by actively excreting the drug accumulated in the cell. As an alternative, they can modify the structure of the antibiotic's molecular target--usually an essential metabolic enzyme of the bacteria--and thus escape the drug's toxic effect. Lastly, they can produce enzymes capable of modifying and directly inactivating the antibiotics. In addition, bacteria have evolved extremely efficient genetic transfer systems capable of exchanging and accumulating resistance genes. Some pathogens, such as methicillin-resistant Staphylococcus aureus and enterococci are now resistant to almost all available antibiotics. Vancomycin is the only non-experimental drug left to treat severe infections due to such organisms. However, vancomycin resistance has already appeared several years ago in enterococci, and was also recently described in staphylococci, in Japan, France and the United-States. Antibiotics are precious drugs which must be administered to patients who need them. On the other hand, the development of resistance must be kept under control by a better comprehension of its mechanisms and modes of transmission and by abiding by the fundamental rules of anti-infectious chemotherapy, i.e.: (i) choose the most efficient antibiotic according to clinical and local epidemiological data, (ii) target the bacteria according to the microbiological data at hand, and (iii) administer the antibiotic at an adequate dose which will leave the pathogen no chance to develop any resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambulatory blood pressure (BP) monitoring is increasingly used in the evaluation of hypertensive patients. The ability to monitor BP throughout the day and night allows the detection of abnormal nocturnal BP patterns, the most common being a "nondipping" pattern, which is associated with increased cardiovascular risk; its correction appears to have a positive impact on cardiovascular outcome. Antihypertensive treatment should be individually adjusted to control BP during both daytime and nighttime. However, drug-induced lowering of nocturnal BP, if excessive, could amplify the morning BP surge in patients with daytime BP elevation, increasing the risk of developing a cardiovascular event. Ambulatory BP monitoring therefore represents a unique tool to establish the most appropriate antihypertensive drug regimen for the individual patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The Thai-Cambodian border has been known as the origin of antimalarial drug resistance for the past 30 years. There is a highly diverse market for antimalarials in this area, and improved knowledge of drug pressure would be useful to target interventions aimed at reducing inappropriate drug use. METHODS: Baseline samples from 125 patients with falciparum malaria recruited for 2 in vivo studies (in Preah Vihear and Pursat provinces) were analyzed for the presence of 14 antimalarials in a single run, by means of a liquid chromatography-tandem mass spectrometry assay. RESULTS: Half of the patients had residual drug concentrations above the lower limit of calibration for at least 1 antimalarial at admission. Among the drugs detected were the currently used first-line drugs mefloquine (25% and 35% of patients) and piperaquine (15% of patients); the first-line drug against vivax malaria, chloroquine (25% and 41% of patients); and the former first-line drug, quinine (5% and 34% patients). CONCLUSIONS: The findings demonstrate that there is high drug pressure and that many people still seek treatment in the private and informal sector, where appropriate treatment is not guaranteed. Promotion of comprehensive behavioral change, communication, community-based mobilization, and advocacy are vital to contain the emergence and spread of parasite resistance against new antimalarials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this review, we first summarize the structure and properties of biological membranes and the routes of passive drug transfer through physiological barriers. Lipophilicity is then introduced in terms of the intermolecular interactions it encodes. Finally, lipophilicity indices from isotropic solvent systems and from anisotropic membrane-like systems are discussed for their capacity to predict passive drug permeation across biological membranes such as the intestinal epithelium, the blood-brain barrier (BBB) or the skin. The broad evidence presented here shows that beyond the predictive power of lipophilicity parameters, the various intermolecular forces they encode allow a mechanistic interpretation of passive drug permeation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Late toxicities such as second cancer induction become more important as treatment outcome improves. Often the dose distribution calculated with a commercial treatment planning system (TPS) is used to estimate radiation carcinogenesis for the radiotherapy patient. However, for locations beyond the treatment field borders, the accuracy is not well known. The aim of this study was to perform detailed out-of-field-measurements for a typical radiotherapy treatment plan administered with a Cyberknife and a Tomotherapy machine and to compare the measurements to the predictions of the TPS. MATERIALS AND METHODS: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The measured dose distributions from 6 MV intensity-modulated treatment beams for CyberKnife and TomoTherapy machines were compared to the dose calculations from the TPS. RESULTS: The TPS are underestimating the dose far away from the target volume. Quantitatively the Cyberknife underestimates the dose at 40cm from the PTV border by a factor of 60, the Tomotherapy TPS by a factor of two. If a 50% dose uncertainty is accepted, the Cyberknife TPS can predict doses down to approximately 10 mGy/treatment Gy, the Tomotherapy-TPS down to 0.75 mGy/treatment Gy. The Cyberknife TPS can then be used up to 10cm from the PTV border the Tomotherapy up to 35cm. CONCLUSIONS: We determined that the Cyberknife and Tomotherapy TPS underestimate substantially the doses far away from the treated volume. It is recommended not to use out-of-field doses from the Cyberknife TPS for applications like modeling of second cancer induction. The Tomotherapy TPS can be used up to 35cm from the PTV border (for a 390 cm(3) large PTV).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Therapeutic drug monitoring (TDM) and pharmacogenetic tests play a major role in minimising adverse drug reactions and enhancing optimal therapeutic response. The response to medication varies greatly between individuals, according to genetic constitution, age, sex, co-morbidities, environmental factors including diet and lifestyle (e.g. smoking and alcohol intake), and drug-related factors such as pharmacokinetic or pharmacodynamic drug-drug interactions. Most adverse drug reactions are type A reactions, i.e. plasma-level dependent, and represent one of the major causes of hospitalisation, in some cases leading to death. However, they may be avoidable to some extent if pharmacokinetic and pharmacogenetic factors are taken into consideration. This article provides a review of the literature and describes how to apply and interpret TDM and certain pharmacogenetic tests and is illustrated by case reports. An algorithm on the use of TDM and pharmacogenetic tests to help characterise adverse drug reactions is also presented. Although, in the scientific community, differences in drug response are increasingly recognised, there is an urgent need to translate this knowledge into clinical recommendations. Databases on drug-drug interactions and the impact of pharmacogenetic polymorphisms and adverse drug reaction information systems will be helpful to guide clinicians in individualised treatment choices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: In the present review, we will provide the scientific rationale for applying systems biology to the development of vaccines and particularly HIV vaccines, the predictive power of systems biology on the vaccine immunological profile, the correlation between systems biology and the immunological functional profiles of different candidate vaccines, and the value of systems biology in the selection process of identifying the best-in-class candidate vaccines and in the decision process to move into in-vivo evaluation in clinical trials. RECENT FINDINGS: Systems biology has been recently applied to the characterization of the protective yellow fever vaccine YF17D and of seasonal flu vaccines. This has been instrumental in the identification of the components of the immune response that need to be stimulated by the vaccine in order to generate protective immunity. It is worth noting that a systems biology approach is currently being performed to identify correlates of immune protection of the RV144 Thai vaccine, the only known vaccine that showed modest protection against HIV reacquisition. SUMMARY: Systems biology represents a novel and powerful approach to predict the vaccine immunological profile, to identify the protective components of the immune response, and to help in the selection process of the best-in-class vaccines to move into clinical development.