178 resultados para Critical Thickness
Resumo:
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
Activation of the NF-kappaB pathway in T cells is required for induction of an adaptive immune response. Hematopoietic progenitor kinase (HPK1) is an important proximal mediator of T-cell receptor (TCR)-induced NF-kappaB activation. Knock-down of HPK1 abrogates TCR-induced IKKbeta and NF-kappaB activation, whereas active HPK1 leads to increased IKKbeta activity in T cells. Yet, the precise molecular mechanism of this process remains elusive. Here, we show that HPK1-mediated NF-kappaB activation is dependent on the adaptor protein CARMA1. HPK1 interacts with CARMA1 in a TCR stimulation-dependent manner and phosphorylates the linker region of CARMA1. Interestingly, the putative HPK1 phosphorylation sites in CARMA1 are different from known PKC consensus sites. Mutations of residues S549, S551, and S552 in CARMA1 abrogated phosphorylation of a CARMA1-linker construct by HPK1 in vitro. In addition, CARMA1 S551A or S5549A/S551A point mutants failed to restore HPK1-mediated and TCR-mediated NF-kappaB activation and IL-2 expression in CARMA1-deficient T cells. Thus, we identify HPK1 as a kinase specific for CARMA1 and suggest HPK1-mediated phosphorylation of CARMA1 as an additional regulatory mechanism tuning the NF-kappaB response upon TCR stimulation.
Resumo:
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
Resumo:
The determination of sediment storage is a critical parameter in sediment budget analyses. But, in many sediment budget studies the quantification of magnitude and time-scale of sediment storage is still the weakest part and often relies on crude estimations only, especially in large drainage basins (>100km2). We present a new approach to storage quantification in a meso-scale alpine catchment of the Swiss Alps (Turtmann Valley, 110km2). The quantification of depositional volumes was performed by combining geophysical surveys and geographic information system (GIS) modelling techniques. Mean thickness values of each landform type calculated from these data was used to estimate the sediment volume in the hanging valleys and the trough slopes. Sediment volume of the remaining subsystems was determined by modelling an assumed parabolic bedrock surface using digital elevation model (DEM) data. A total sediment volume of 781·3×106?1005·7×106m3 is deposited in the Turtmann Valley. Over 60% of this volume is stored in the 13 hanging valleys. Moraine landforms contain over 60% of the deposits in the hanging valleys followed by sediment stored on slopes (20%) and rock glaciers (15%). For the first time, a detailed quantification of different storage types was achieved in a catchment of this size. Sediment volumes have been used to calculate mean denudation rates for the different processes ranging from 0·1 to 2·6mm/a based on a time span of 10ka. As the quantification approach includes a number of assumptions and various sources of error the values given represent the order of magnitude of sediment storage that has to be expected in a catchment of this size.
Resumo:
Dr. Narakas intended to study a series of 61 cases of shoulder sequelae of obstetric palsy. His vast experience would have enriched our clinical knowledge of this ailment. The authors carry on with that study to clarify his therapeutic approach and share the benefit of his experience.
Resumo:
Purified, [131I]-labeled goat antibodies against carcinoembryonic antigen, which have been shown to localize in human carcinoma in nude mice, were injected into 27 patients with carcinoma. Patients were scanned with a scintillation camera at various intervals. In 11 patients, radioactivity was detectable in the tumor 48 hours after injection. Computerized subtraction of blood-pool radioactivity provided clearer pictures in positive cases, but in 16 patients the scans remained doubtful or negative. To study the specificity of [131I]-antibody localization, we gave some patients simultaneous injections of [125I]-labeled normal IgG. Both isotopes were measured by means of scintillation counting in tumors and normal tissues recovered after surgery. The results demonstrated that only the anti-CEA antibodies localized in tumors. However, the total antibody-derived radioactivity in the tumor was only about 0.001 of the injected dose. We conclude that, despite the present demonstration of specificity, this method of tumor detection is not yet clinically useful.
Resumo:
Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.
Resumo:
PURPOSE: The primary objective of this study was to describe the frequency of behaviors observed during rest, a non-nociceptive procedure, and a nociceptive procedure in brain-injured intensive care unit (ICU) patients with different levels of consciousness (LOC). Second, it examined the inter-rater reliability and discriminant and concurrent validity of the behavioral checklist used. METHODS: The non-nociceptive procedure involved calling the patient and shaking his/her shoulder. The nociceptive procedure involved turning the patient. The frequency of behaviors was recorded using a behavioral checklist. RESULTS: Patients with absence of movement, or stereotyped flexion or extension responses to a nociceptive stimulus displayed more behaviors during turning (median 5.5, range 0-14) than patients with localized responses (median 4, range 0-10) or able to self-report their pain (median 4, range 0-10). Face flushing, clenched teeth, clenched fist, and tremor were more frequent in patients with absence of movement, or stereotyped responses to a nociceptive stimulus. The reliability of the checklist was supported by a high intra-class correlation coefficient (0.77-0.92), and the internal consistency was acceptable in all three groups (KR 20, 0.71-0.85). Discriminant validity was supported as significantly more behaviors were observed during nociceptive stimulation than at rest. Concurrent validity was confirmed as checklist scores were correlated to the patients' self-reports of pain (r s = 0.53; 95 % CI 0.21-0.75). CONCLUSION: Brain-injured patients reacted significantly more during a nociceptive stimulus and the number of observed behaviors was higher in patients with a stereotyped response.
Resumo:
La réponse métabolique de l'obèse apparemment « sainen situation d'agression aiguë (polytraumatisés, traumatisés crâniens, patients chirurgicaux, grands brûlés, opérations électives) ne se distingue pas ou peu de celle de l'individu non-obèse. Cependant, les complications médicales liées à l'agression (insuffisances respiratoire et cardiaque, bronchopneumonie, infections de plaies, thrombophlébites et embolies) demeurent plus importantes chez l'obèse morbide que chez l'individu de poids normal. Grâce à l'inflation de ses réserves énergétiques, l'obèse apparemment sain est avantagé, par rapport au sujet mince, au cours d'une agression nutritionnelle chronique telle que le jeûne prolongé. Le facteur fonctionnel limitant la survie dépend avant tout de la composition corporelle initiale et du degré d'adaptation métabolique (et comportementale) en particulier du degré de conservation de la masse maigre par rapport à la masse grasse. La mobilisation accrue de la masse grasse associée à la perte de poids chez l'obèse (par rapport à son homologue non-obèse) est favorable à une prolongation de la vie, car, en brûlant davantage de graisse corporelle, la part des protéines corporelles endogènes utilisée à des fins énergétiques est plus faible. Il s'ensuit chez l'obèse qu'un niveau de masse maigre critique pour la survie n'est atteint qu'après une réduction très marquée de ses réserves énergétiques. En revanche, le sujet mince perd davantage de masse maigre lors de l'amaigrissement et, par conséquent, son métabolisme de repos diminuera plus rapidement que celui du sujet obèse. Cela peut constituer un avantage énergétique évident en termes d'économie d'énergie consécutive à l'adaptation métabolique, mais un inconvénient majeur quant à la durée de la survie. The metabolic response of « apparently healthyobese individuals following acute injury (multiple trauma, head injury and surgical patients, extended burns, elective surgery) is not dramatically different from that of a non-obese individuals. However, the medical complications following the injury (respiratory and cardiac insufficiency, broncho-pneumonia, infections of wounds, trombophlebitis and embolism) are more prevalent in morbid obese patients than in individuals of normal body weight. Because of a large increase in their individuals energy store, "apparently healthy" obese individuals have an advantage over very lean subjects when exposed to a chronic nutritional aggression such as total fasting. The functional limiting factor for survival depends primarily on initial body composition and the magnitude of metabolic adaptation (including behavioral adaptation). The key factor is the extent to which the fat-free mass is maintained (versus to the fat mass) during weight loss. The increased proportion of body fat mobilized during weight loss in obese patients, compared with their non-obese counterparts, favors prolonged survival, because more adipose tissue is burned off, the fraction of body protein endogenously utilized for energy purpose individuals, is smaller. This implies that obese individuals do not reach a fat-free mass "critical" for their survival until their energy stores reach very low values. In contrast, lean subject tend to lose more fat-free mass during weight loss than obese subjects and, as a result, their energy expenditure drops more rapidly. This may offer a potential advantage in terms of energy economy (more energy saving) but a major disadvantage in terms of duration of survival.
Resumo:
Although canonical Notch signaling regulates multiple hematopoietic lineage decisions including T cell and marginal zone B cell fate specification, the downstream molecular mediators of Notch function are largely unknown. We showed here that conditional inactivation of Hes1, a well-characterized Notch target gene, in adult murine bone marrow (BM) cells severely impaired T cell development without affecting other Notch-dependent hematopoietic lineages such as marginal zone B cells. Competitive mixed BM chimeras, intrathymic transfer experiments, and in vitro culture of BM progenitors on Delta-like-expressing stromal cells further demonstrated that Hes1 is required for T cell lineage commitment, but dispensable for Notch-dependent thymocyte maturation through and beyond the beta selection checkpoint. Furthermore, our data strongly suggest that Hes1 is essential for the development and maintenance of Notch-induced T cell acute lymphoblastic leukemia. Collectively, our studies identify Hes1 as a critical but context-dependent mediator of canonical Notch signaling in the hematopoietic system.
Resumo:
Purpose: To evaluate the reproducibility of Cirrus-SD OCT measurements and to compare central macular thickness (CMT) measurements between TD-Stratus and SD-Cirrus OCT in patients with active exudative AMD. Methods: Consecutive case series of patients with active exudative AMD seen in the Medical Retina Department. Patients underwent 1 scan with Stratus (macular thickness map protocol) and 5 scans with Cirrus (Macular Cube protocol) at the same visit by the same experienced examiner. To be included, patients best-corrected visual acuity (BCVA) had to be >20/200 while all scans had to be of sufficient quality, well-centered and at least one Cirrus scan with CMT >300 microns. The repeatability of the SD Cirrus was estimated by using all 5 CMT measurements and the mean of the Cirrus measurements was compared with the CMT obtained by TD Stratus. Results: Cirrus OCT demonstrated high intraobserver repeatability at the central foveal region (ICC 96%). The mean of the CMT measurements was 321microns for Stratus and 387 microns for Cirrus. The average difference was 65m (SD=30). The coefficient of concordance between Stratus and Cirrus CMT measurements was rho=0,749 with a high precision and a moderate accuracy. The equation of the line of regression between Stratus and meanCirrus is given by the following: M_stratus = 0,848 x m_cirrus - 4,496 (1).Conclusions: The Cirrus macular cube protocol allows reproducible CMT measurements in patients with active exudative AMD. In cases of upgrading from TD to SD use and vice versa, there is the possibility to predict the measurements by using the equation (1). These real life data and conclusions can help in improving our clinical management of patients with neovascular AMD.