222 resultados para Classification accuracy
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
For several years, the lack of consensus on definition, nomenclature, natural history, and biology of serrated polyps (SPs) of the colon has created considerable confusion among pathologists. According to the latest WHO classification, the family of SPs comprises hyperplastic polyps (HPs), sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas (TSAs). The term SSA/P with dysplasia has replaced the category of mixed hyperplastic/adenomatous polyps (MPs). The present study aimed to evaluate the reproducibility of the diagnosis of SPs based on currently available diagnostic criteria and interactive consensus development. In an initial round, H&E slides of 70 cases of SPs were circulated among participating pathologists across Europe. This round was followed by a consensus discussion on diagnostic criteria. A second round was performed on the same 70 cases using the revised criteria and definitions according to the recent WHO classification. Data were evaluated for inter-observer agreement using Kappa statistics. In the initial round, for the total of 70 cases, a fair overall kappa value of 0.318 was reached, while in the second round overall kappa value improved to moderate (kappa = 0.557; p < 0.001). Overall kappa values for each diagnostic category also significantly improved in the final round, reaching 0.977 for HP, 0.912 for SSA/P, and 0.845 for TSA (p < 0.001). The diagnostic reproducibility of SPs improves when strictly defined, standardized diagnostic criteria adopted by consensus are applied.
Resumo:
OBJECTIVE: Accurate identification of major trauma patients in the prehospital setting positively affects survival and resource utilization. Triage algorithms using predictive criteria of injury severity have been identified in paramedic-based prehospital systems. Our rescue system is based on prehospital paramedics and emergency physicians. The aim of this study was to evaluate the accuracy of the prehospital triage performed by physicians and to identify the predictive factors leading to errors of triage.METHODS: Retrospective study of trauma patients triaged by physicians. Prehospital triage was analyzed using criteria defining major trauma victims (MTVs, Injury Severity Score >15, admission to ICU, need for immediate surgery and death within 48 h). Adequate triage was defined as MTVs oriented to the trauma centre or non-MTV (NMTV) oriented to regional hospitals.RESULTS: One thousand six hundred and eighti-five patients (blunt trauma 96%) were included (558 MTV and 1127 NMTV). Triage was adequate in 1455 patients (86.4%). Overtriage occurred in 171 cases (10.1%) and undertriage in 59 cases (3.5%). Sensitivity and specificity was 90 and 85%, respectively, whereas positive predictive value and negative predictive value were 75 and 94%, respectively. Using logistic regression analysis, significant (P<0.05) predictors of undertriage were head or thorax injuries (odds ratio >2.5). Predictors of overtriage were paediatric age group, pedestrian or 2 wheel-vehicle road traffic accidents (odds ratio >2.0).CONCLUSION: Physicians using clinical judgement provide effective prehospital triage of trauma patients. Only a few factors predicting errors in triage process were identified in this study.
Resumo:
Aim: Climatic niche modelling of species and community distributions implicitly assumes strong and constant climatic determinism across geographic space. This assumption had however never been tested so far. We tested it by assessing how stacked-species distribution models (S-SDMs) perform for predicting plant species assemblages along elevation. Location: Western Swiss Alps. Methods: Using robust presence-absence data, we first assessed the ability of topo-climatic S-SDMs to predict plant assemblages in a study area encompassing a 2800 m wide elevation gradient. We then assessed the relationships among several evaluation metrics and trait-based tests of community assembly rules. Results: The standard errors of individual SDMs decreased significantly towards higher elevations. Overall, the S-SDM overpredicted far more than they underpredicted richness and could not reproduce the humpback curve along elevation. Overprediction was greater at low and mid-range elevations in absolute values but greater at high elevations when standardised by the actual richness. Looking at species composition, the evaluation metrics accounting for both the presence and absence of species (overall prediction success and kappa) or focusing on correctly predicted absences (specificity) increased with increasing elevation, while the metrics focusing on correctly predicted presences (Jaccard index and sensitivity) decreased. The best overall evaluation - as driven by specificity - occurred at high elevation where species assemblages were shown to be under significant environmental filtering of small plants. In contrast, the decreased overall accuracy in the lowlands was associated with functional patterns representing any type of assembly rule (environmental filtering, limiting similarity or null assembly). Main Conclusions: Our study reveals interesting patterns of change in S-SDM errors with changes in assembly rules along elevation. Yet, significant levels of assemblage prediction errors occurred throughout the gradient, calling for further improvement of SDMs, e.g., by adding key environmental filters that act at fine scales and developing approaches to account for variations in the influence of predictors along environmental gradients.
Resumo:
We present state-of-the-art dual-wavelength digital holographic microscopy (DHM) measurement on a calibrated 8.9 nm high chromium thin step sample and demonstrate sub-nanometer axial accuracy. By using a modified DHM reference calibrated hologram (RCH) reconstruction method, a temporal averaging procedure and a specific dual-wavelength DHM arrangement, it is shown that specimen topography can be measured with an accuracy, defined as the axial standard deviation, reduced to at least 0.9 nm. Indeed for the first time to the best of our knowledge, it is reported that averaging each of the two wavefronts recorded with real-time dual-wavelength DHM can provide up to 30% spatial noise reduction for the given configuration. Moreover, the presented experimental configuration achieves a temporal stability below 0.8 nm, thus paving the way to Angström range for dual-wavelength DHM.
Resumo:
Predictive groundwater modeling requires accurate information about aquifer characteristics. Geophysical imaging is a powerful tool for delineating aquifer properties at an appropriate scale and resolution, but it suffers from problems of ambiguity. One way to overcome such limitations is to adopt a simultaneous multitechnique inversion strategy. We have developed a methodology for aquifer characterization based on structural joint inversion of multiple geophysical data sets followed by clustering to form zones and subsequent inversion for zonal parameters. Joint inversions based on cross-gradient structural constraints require less restrictive assumptions than, say, applying predefined petro-physical relationships and generally yield superior results. This approach has, for the first time, been applied to three geophysical data types in three dimensions. A classification scheme using maximum likelihood estimation is used to determine the parameters of a Gaussian mixture model that defines zonal geometries from joint-inversion tomograms. The resulting zones are used to estimate representative geophysical parameters of each zone, which are then used for field-scale petrophysical analysis. A synthetic study demonstrated how joint inversion of seismic and radar traveltimes and electrical resistance tomography (ERT) data greatly reduces misclassification of zones (down from 21.3% to 3.7%) and improves the accuracy of retrieved zonal parameters (from 1.8% to 0.3%) compared to individual inversions. We applied our scheme to a data set collected in northeastern Switzerland to delineate lithologic subunits within a gravel aquifer. The inversion models resolve three principal subhorizontal units along with some important 3D heterogeneity. Petro-physical analysis of the zonal parameters indicated approximately 30% variation in porosity within the gravel aquifer and an increasing fraction of finer sediments with depth.
Resumo:
Purpose: To assess the global cardiovascular (CV) risk of an individual, several scores have been developed. However, their accuracy and comparability need to be evaluated in populations others from which they were derived. The aim of this study was to compare the predictive accuracy of 4 CV risk scores using data of a large population-based cohort. Methods: Prospective cohort study including 4980 participants (2698 women, mean age± SD: 52.7±10.8 years) in Lausanne, Switzerland followed for an average of 5.5 years (range 0.2 - 8.5). Two end points were assessed: 1) coronary heart disease (CHD), and 2) CV diseases (CVD). Four risk scores were compared: original and recalibrated Framingham coronary heart disease scores (1998 and 2001); original PROCAM score (2002) and its recalibrated version for Switzerland (IAS-AGLA); Reynolds risk score. Discrimination was assessed using Harrell's C statistics, model fitness using Akaike's information criterion (AIC) and calibration using pseudo Hosmer-Lemeshow test. The sensitivity, specificity and corresponding 95% confidence intervals were assessed for each risk score using the highest risk category ([20+ % at 10 years) as the "positive" test. Results: Recalibrated and original 1998 and original 2001 Framingham scores show better discrimination (>0.720) and model fitness (low AIC) for CHD and CVD. All 4 scores are correctly calibrated (Chi2<20). The recalibrated Framingham 1998 score has the best sensitivities, 37.8% and 40.4%, for CHD and CVD, respectively. All scores present specificities >90%. Framingham 1998, PROCAM and IAS-AGLA scores include the greatest proportion of subjects (>200) in the high risk category whereas recalibrated Framingham 2001 and Reynolds include <=44 subjects. Conclusion: In this cohort, we see variations of accuracy between risk scores, the original Framingham 2001 score demonstrating the best compromise between its accuracy and its limited selection of subjects in the highest risk category. We advocate that national guidelines, based on independently validated data, take into account calibrated CV risk scores for their respective countries.
Resumo:
An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.
Resumo:
OBJECTIVES: To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. METHODS: This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 × 0.3 mm(2)). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. RESULTS: Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. CONCLUSION: HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. KEY POINTS: • HR-MRI excludes advanced optic nerve invasion with high negative predictive value. • HR-MRI accurately selects patients eligible for primary enucleation. • Diagnosis of early stages of optic nerve invasion still relies on pathology. • Several physiological MR patterns may mimic optic nerve invasion.