390 resultados para Carrier Proteins.
Resumo:
Initiation of Bacillus subtilis bacteriophage SPP1 replication requires the phage-encoded genes 38, 39 and 40 products (G38P, G39P and G40P). G39P, which does not bind DNA, interacts with the replisome organiser, G38P, in the absence of ATP and with the ATP-activated hexameric replication fork helicase, G40P. G38P, which specifically interacts with the phage replication origin (oriL) DNA, does not seem to form a stable complex with G40P in solution. G39P when complexed with G40P-ATP inactivates the single-stranded DNA binding, ATPase and unwinding activities of G40P, and such effects are reversed by increasing amounts of G38P. Unwinding of a forked substrate by G40P-ATP is increased about tenfold by the addition of G38P and G39P to the reaction mixture. The specific protein-protein interactions between oriL-bound G38P and the G39P-G40P-ATPgammaS complex are necessary for helicase delivery to the SPP1 replication origin. Formation of G38P-G39P heterodimers releases G40P-ATPgammaS from the unstable oriL-G38P-G39P-G40P-ATPgammaS intermediate. G40P-ATPgammaS binds to the origin region, the uncomplexed G38P fraction remains bound to oriL, and the G38P-G39P heterodimer is lost from the complex. We demonstrate that G39P is a component of an oligomeric nucleoprotein complex which plays an important role in the initiation of SPP1 replication.
Resumo:
PURPOSE: An increased mRNA expression of the genes coding for the extracellular matrix proteins neuroglycan C (NGC), interphotoreceptor matrix proteoglycan 2 (IMPG2), and CD44 antigen (CD44) has been observed during retinal degeneration in mice with a targeted disruption of the Rpe65 gene (Rpe65-/- mouse). To validate these data, we analyzed this differential expression in more detail by characterizing retinal NGC mRNA isoform and protein expression during disease progression. METHODS: Retinas from C57/Bl6 wild-type and Rpe65-/- mice, ranging 2 to 18 months of age, were used. NGC, IMPG2, and CD44 mRNA expression was assessed by oligonucleotide microarray, quantitative PCR, and in situ hybridization. Retinal NGC protein expression was analyzed by western blot and immunohistochemistry. RESULTS: As measured by quantitative PCR, mRNA expression of NGC and CD44 was induced by about 2 fold to 3 fold at all time points in Rpe65-/- retinas, whereas initially 4 fold elevated IMPG2 mRNA levels progressively declined. NGC and IMPG2 mRNAs were expressed in the ganglion cell layer, the inner nuclear layer, and at the outer limiting membrane. NGC mRNA was also detected in retinal pigment epithelium cells (RPE), where its mRNA expression was not induced during retinal degeneration. NGC-I was the major isoform detected in the retina and the RPE, whereas NGC-III was barely detected and NGC-II could not be assessed. NGC protein expression was at its highest levels on the apical membrane of the RPE. NGC protein levels were induced in retinas from 2- and 4-month-old Rpe65-/- mice, and an increased amount of the activity-cleaved NGC ectodomain containing an epidermal growth factor (EGF)-like domain was detected. CONCLUSIONS: During retinal degeneration in Rpe65-/- mice, NGC expression is induced in the neural retina, but not in the RPE, where NGC is expressed at highest levels.
Resumo:
Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in approximately 70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane.
Resumo:
Caspase 1 is part of the inflammasome, which is assembled upon pathogen recognition, while caspases 3 and/or 7 are mediators of apoptotic and nonapoptotic functions. PARP1 cleavage is a hallmark of apoptosis yet not essential, suggesting it has another physiological role. Here we show that after LPS stimulation, caspase 7 is activated by caspase 1, translocates to the nucleus, and cleaves PARP1 at the promoters of a subset of NF-κB target genes negatively regulated by PARP1. Mutating the PARP1 cleavage site D214 renders PARP1 uncleavable and inhibits PARP1 release from chromatin and chromatin decondensation, thereby restraining the expression of cleavage-dependent NF-κB target genes. These findings propose an apoptosis-independent regulatory role for caspase 7-mediated PARP1 cleavage in proinflammatory gene expression and provide insight into inflammasome signaling.
Resumo:
Mature T cells comprise two mutually exclusive lineages expressing heterodimeric alpha beta or gamma delta antigen receptors. During development, beta, gamma, and delta genes rearrange before alpha, and mature gamma delta cells arise in the thymus prior to alpha beta cells. The mechanism underlying commitment of immature T cells to the alpha beta or gamma delta lineage is controversial. Since the delta locus is located within the alpha locus, rearrangement of alpha genes leads to deletion of delta. We have examined the rearrangement status of the delta locus immediately prior to alpha rearrangement. We find that many thymic precursors of alpha beta cells undergo VDJ delta rearrangements. Furthermore, the same cells frequently coexpress sterile T early alpha (TEA) transcripts originating 3' of C delta and 5' of the most upstream J alpha, thus implying that individual alpha beta lineage cells undergo sequential VDJ delta and VJ alpha rearrangements. Finally, VDJ delta rearrangements in immature alpha beta cells appear to be random, supporting models in which alpha beta lineage commitment is determined independently of the rearrangement status at the TCR delta locus.
Resumo:
Activation of cultured hepatic stellate cells correlated with an enhanced expression of proteins involved in uptake and storage of fatty acids (FA translocase CD36, Acyl-CoA synthetase 2) and retinol (cellular retinol binding protein type I, CRBP-I; lecithin:retinol acyltransferases, LRAT). The increased expression of CRBP-I and LRAT during hepatic stellate cells activation, both involved in retinol esterification, was in contrast with the simultaneous depletion of their typical lipid-vitamin A (vitA) reserves. Since hepatic stellate cells express high levels of peroxisome proliferator activated receptor beta (PPARbeta), which become further induced during transition into the activated phenotype, we investigated the potential role of PPARbeta in the regulation of these changes. Administration of L165041, a PPARbeta-specific agonist, further induced the expression of CD36, B-FABP, CRBP-I, and LRAT, whereas their expression was inhibited by antisense PPARbeta mRNA. PPARbeta-RXR dimers bound to CRBP-I promoter sequences. Our observations suggest that PPARbeta regulates the expression of these genes, and thus could play an important role in vitA storage. In vivo, we observed a striking association between the enhanced expression of PPARbeta and CRBP-I in activated myofibroblast-like hepatic stellate cells and the manifestation of vitA autofluorescent droplets in the fibrotic septa after injury with CCl4 or CCl4 in combination with retinol.
Resumo:
In vitro and in vivo activity of amoxicillin and penicillin G alone or combined with a penicillinase inhibitor (clavulanate) were tested against five isogenic pairs of methicillin-resistant Staphylococcus aureus (MRSA) producing or not producing penicillinase. Loss of the penicillinase plasmid caused an eight times or greater reduction in the MICs of amoxicillin and penicillin G (from greater than or equal to 64 to 8 micrograms/ml), but not of the penicillinase-resistant drugs methicillin and cloxacillin (greater than or equal to 64 micrograms/ml). This difference in antibacterial effectiveness correlated with a more than 10 times greater penicillin-binding protein 2a affinity of amoxicillin and penicillin G than of methicillin and a greater than or equal to 90% successful amoxicillin treatment of experimental endocarditis due to penicillinase-negative MRSA compared with cloxacillin, which was totally ineffective (P less than .001). Amoxicillin was also effective against penicillinase-producing parent MRSA, provided it was combined with clavulanate. Penicillinase-sensitive beta-lactam antibiotics plus penicillinase inhibitors might offer a rational alternative treatment for MRSA infections.
Resumo:
The use of antimycotic drugs in fungal infections is based on the concept that they suppress fungal growth by a direct killing effect. However, amphotericin and nystatin have been reported to also trigger interleukin-1β (IL-1β) secretion in monocytes but the molecular mechanism is unknown. Here we report that only the polyene macrolides amphotericin B, nystatin, and natamycin but none of the tested azole antimycotic drugs induce significant IL-1β secretion in-vitro in dendritic cells isolated from C57BL/6 mouse bone marrow. IL-1β release depended on Toll-like receptor-mediated induction of pro-IL-1β as well as the NLRP3 inflammasome, its adaptor ASC, and caspase-1 for enzymatic cleavage of pro-IL-1β into its mature form. All three drugs induced potassium efflux from the cells as a known mechanism for NLRP3 activation but the P2X7 receptor was not required for this process. Natamycin-induced IL-1β secretion also involved phagocytosis, as cathepsin activation as described for crystal-induced IL-1β release. Together, the polyene macrolides amphotericin B, nystatin, and natamycin trigger IL-1β secretion by causing potassium efflux from which activates the NLRP3-ASC-caspase-1. We conclude that beyond their effects on fungal growth, these antifungal drugs directly activate the host's innate immunity.
Resumo:
For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.
Resumo:
BACKGROUND: The increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup. Such new information highlights the crucial role of lateral genetic exchanges in bacterial evolution and speciation. RESULTS: Here we analyzed the twelve sequenced genomes of Streptococcus pyogenes by a naïve approach that examines the preferential nucleotide usage along the chromosome, namely the usage of G versus C (GC-skew) and T versus A (TA-skew). The cumulative GC-skew plot presented an inverted V-shape composed of two symmetrical linear segments, where the minimum and maximum corresponded to the origin and terminus of DNA replication. In contrast, the cumulative TA-skew presented a V-shape, which segments were interrupted by several steep slopes regions (SSRs), indicative of a different nucleotide composition bias. Each S. pyogenes genome contained up to nine individual SSRs, encompassing all described strain-specific prophages. In addition, each genome contained a similar unique non-phage SSR, the core of which consisted of 31 highly homologous genes. This core includes the M-protein, other mga-related factors and other virulence genes, totaling ten intrinsic virulence genes. In addition to a high content in virulence-related genes and to a peculiar nucleotide bias, this SSR, which is 47 kb-long in a M1GAS strain, harbors direct repeats and a tRNA gene, suggesting a mobile element. Moreover, its complete absence in a M-protein negative group A Streptococcus natural isolate demonstrates that it could be spontaneously lost, but in vitro deletion experiments indicates that its excision occurred at very low rate. The stability of this SSR, combined to its presence in all sequenced S. pyogenes sequenced genome, suggests that it results from an ancient acquisition. CONCLUSION: Thus, this non-phagic SSR is compatible with a pathogenicity island, acquired before S. pyogenes speciation. Its potential excision might bear relevance for vaccine development, because vaccines targeting M-protein might select for M-protein-negative variants that still carry other virulence determinants.
Resumo:
Purpose: C57/Bl6, Cpfl1-/- (Cone photoreceptors function loss 1; pure rod function), Gnat1alpha-/- (rod alpha-transducin; pure cone function) and Rpe65-/-;Rho-/- double knock-out mice were studied in order to distinguish the respective contributions of the different photoreceptor (PR) systems that enable light perception and mediate a visual reflex in adult Rpe65-/- mice using a simple behavioural procedure. Methods: Visual function was estimated using a rotating automatized optomotor drum covered with vertical black and white stripes at spatial frequencies of 0.025 to 0.5 cycles per degree (cpd) in both photopic and scotopic conditions. To evaluate the contribution as well as the light intensity threshold of each PR system, we tested the mouse strains with different luminances. Results: Stripe rotation elicits head movements in wild-type (WT) animals in photopic and scotopic conditions depending on the spatial frequency, whereas Cpfl1-/- mice show a reduced activity in the photopic condition and Gnat1alpha-/- mice an almost absent response in the scotopic condition. Interestingly, a robust visual response is obtained with Rpe65-/- knockout mice at 0.075 cpd and 0.1 cpd in the photopic condition. The residual rod function in the Rpe65-/- animals was demonstrated by testing Rpe65-/-;Rho-/- mice that present no response in photopic conditions. Conclusions: The optomotor test is a simple method to estimate the visual function, and to evaluate the respective contributions of rod and cone systems. Using this test, we demonstrate that in Rpe65-/- mice, devoid of functional cones and of detectable 11-cis-retinal protein, rods mimic in part the cone function by mediating vision in photopic conditions.
Resumo:
Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.
Resumo:
The NLRP3 inflammasome has a major role in regulating innate immunity. Deregulated inflammasome activity is associated with several inflammatory diseases, yet little is known about the signaling pathways that lead to its activation. Here we show that NLRP3 interacted with thioredoxin (TRX)-interacting protein (TXNIP), a protein linked to insulin resistance. Inflammasome activators such as uric acid crystals induced the dissociation of TXNIP from thioredoxin in a reactive oxygen species (ROS)-sensitive manner and allowed it to bind NLRP3. TXNIP deficiency impaired activation of the NLRP3 inflammasome and subsequent secretion of interleukin 1beta (IL-1beta). Akin to Txnip(-/-) mice, Nlrp3(-/-) mice showed improved glucose tolerance and insulin sensitivity. The participation of TXNIP in the NLRP3 inflammasome activation may provide a mechanistic link to the observed involvement of IL-1beta in the pathogenesis of type 2 diabetes.
Resumo:
The death receptor Fas is a member of the tumor necrosis factor receptor family; upon interaction with its ligand it efficiently activates caspases and induces apoptosis. Despite abundant Fas surface expression, however, Fas death-signals are frequently interrupted. Many viruses express antiapoptotic proteins, including caspase inhibitors, Bcl-2 homologues and death-effector-domain-containing proteins that are termed FLIPs (FLICE [Fas-associated death-domain-like IL-1beta-converting enzyme]-inhibitory proteins). Cellular homologues of these inhibitors have been identified. Cellular FLIPs structurally resemble caspase-8 except that they lack proteolytic activity. FLIPs are highly expressed in tumor cells, T lymphocytes and healthy, but not injured, myocytes; this suggests a critical role of FLIPs as endogenous modulators of apoptosis.