255 resultados para Calcium Channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peter Karlson and Martin Lüscher used the term pheromone for the first time in 1959 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules secreted and/or contained in biological fluids, such as urine, a liquid known to be a main source of pheromones. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions, hierarchical organisations and sexual interactions and are consequently directly correlated with the survival of a given species. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO), a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs). Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize. Two main vomeronasal receptor families, V1Rs and V2Rs, are composed respectively by 240 and 120 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs) and formyl peptide receptors (FPRs) are also expressed in VSNs. Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons TRPC2 independent transduction channels have been suggested. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex. Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with β-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the ENaC/degenerin family of ion channels include the epithelial sodium channel (ENaC), acid-sensing ion channels (ASICs) and the nematode Caenorhabditis elegans degenerins. These channels are activated by a variety of stimuli such as ligands (ASICs) and mechanical forces (degenerins), or otherwise are constitutively active (ENaC). Despite their functional heterogeneity, these channels might share common basic mechanisms for gating. Mutations of a conserved residue in the extracellular loop, namely the 'degenerin site' activate all members of the ENaC/degenerin family. Chemical modification of a cysteine introduced in the degenerin site of rat ENaC (betaS518C) by the sulfhydryl reagents MTSET or MTSEA, results in a approximately 3-fold increase in the open probability. This effect is due to an 8-fold shortening of channel closed times and an increase in the number of long openings. In contrast to the intracellular gating domain in the N-terminus which is critical for channel opening, the intact extracellular degenerin site is necessary for normal channel closing, as illustrated by our observation that modification of betaS518C destabilises the channel closed state. The modification by the sulfhydryl reagents is state- and size-dependent consistent with a conformational change of the degenerin site during channel opening and closing. We propose that the intracellular and extracellular modulatory sites act on a common channel gate and control the activity of ENaC at the cell surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cortical collecting duct (CCD) plays a key role in regulated K(+) secretion, which is mediated mainly through renal outer medullary K(+) (ROMK) channels located in the apical membrane. However, the mechanisms of the regulation of urinary K(+) excretion with regard to K(+) balance are not well known. We took advantage of a recently established mouse CCD cell line (mCCD(cl1)) to investigate the regulation of K(+) secretion by mineralocorticoid and K(+) concentration. We show that this cell line expresses ROMK mRNA and a barium-sensitive K(+) conductance in its apical membrane. As this conductance is sensitive to tertiapin-Q, with an apparent affinity of 6 nM, and to intracellular acidification, it is probably mediated by ROMK. Overnight exposure to 100 nM aldosterone did not significantly change the K(+) conductance, while it increased the amiloride-sensitive Na(+) transport. Overnight exposure to a high K(+) (7 mM) concentration produced a small but significant increase in the apical membrane barium-sensitive K(+) conductance. The mRNA levels of all ROMK isoforms measured by qRT-PCR were not changed by altering the basolateral K(+) concentration but were decreased by 15-45% upon treatment with aldosterone (0.3 or 300 nM for 1 and 3 h). The paradoxical response of ROMK expression to aldosterone could possibly work as a preventative mechanism to avoid excessive K(+) loss which would otherwise result from the increased electrogenic Na(+) transport and associated depolarization of the apical membrane in the CCD. In conclusion, mCCD(cl1) cells demonstrate a significant K(+) secretion, probably mediated by ROMK, which is not stimulated by aldosterone but increased by overnight exposure to a high K(+) concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amiloride-sensitive epithelial sodium channel constitutes the rate-limiting step for sodium reabsorption in epithelial cells that line the distal part of the renal tubule, the distal colon, the duct of several exocrine glands, and the lung. The activity of this channel is upregulated by vasopressin and aldosterone, hormones involved in the maintenance of sodium balance, blood volume and blood pressure. We have identified the primary structure of the alpha-subunit of the rat epithelial sodium channel by expression cloning in Xenopus laevis oocytes. An identical subunit has recently been reported. Here we identify two other subunits (beta and gamma) by functional complementation of the alpha-subunit of the rat epithelial Na+ channel. The ion-selective permeability, the gating properties and the pharmacological profile of the channel formed by coexpressing the three subunits in oocytes are similar to that of the native channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the study was to search for mutations of SCNN1B and SCNN1G in an Italian family with apparently dominant autosomal transmission of a clinical phenotype consistent with Liddle's syndrome. METHODS: Genetic analysis was performed in the proband, his relatives, and 100 control subjects. To determine the functional role of the mutation identified in the proband, we expressed the mutant or wild-type epithelial sodium channel in Xenopus laevis oocytes. RESULTS: A novel point mutation, causing an expected substitution of a leucine residue for the second proline residue of the conserved PY motif (PPP x Y) of the beta subunit was identified in the proband. The functional expression of the mutant epithelial sodium channel in X. laevis oocytes showed a three-fold increase in the amiloride-sensitive current as compared with that of the wild-type channel. CONCLUSION: This newly identified mutation adds to other missense mutations of the PY motif of the beta subunit of the epithelial sodium channel, thus confirming its crucial role in the regulation of the epithelial sodium channel. To our knowledge, this is the first report of Liddle's syndrome in the Italian population, confirmed by genetic and functional analysis, with the identification of a gain-of-function mutation not previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial Na(+) channel (ENaC)/degenerin family members are involved in mechanosensation, blood pressure control, pain sensation, and the expression of fear. Several of these channel types display a form of desensitization that allows the channel to limit Na(+) influx during prolonged stimulation. We used site-directed mutagenesis and chemical modification, functional analysis, and molecular dynamics simulations to investigate the role of the lower palm domain of the acid-sensing ion channel 1, a member of the ENaC/degenerin family. The lower palm domains of this trimeric channel are arranged around a central vestibule, at ∼20 Å above the plasma membrane and are covalently linked to the transmembrane channel parts. We show that the lower palm domains approach one another during desensitization. Residues in the palm co-determine the pH dependence of desensitization, its kinetics, and the stability of the desensitized state. Mutations of palm residues impair desensitization by preventing the closing movement of the palm. Overexpression of desensitization-impaired channel mutants in central neurons allowed--in contrast to overexpression of wild type--a sustained signaling response to rapid pH fluctuations. We identify and describe here the function of an important regulatory domain that most likely has a conserved role in ENaC/degenerin channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Associations of serum calcium levels with the metabolic syndrome and other novel cardio-metabolic risk factors not classically included in the metabolic syndrome, such as those involved in oxidative stress, are largely unexplored. We analyzed the association of albumin-corrected serum calcium levels with conventional and non-conventional cardio-metabolic risk factors in a general adult population. METHODOLOGY/PRINCIPAL FINDINGS: The CoLaus study is a population-based study including Caucasians from Lausanne, Switzerland. The metabolic syndrome was defined using the Adult Treatment Panel III criteria. Non-conventional cardio-metabolic risk factors considered included: fat mass, leptin, LDL particle size, apolipoprotein B, fasting insulin, adiponectin, ultrasensitive CRP, serum uric acid, homocysteine, and gamma-glutamyltransferase. We used adjusted standardized multivariable regression to compare the association of each cardio-metabolic risk factor with albumin-corrected serum calcium. We assessed associations of albumin-corrected serum calcium with the cumulative number of non-conventional cardio-metabolic risk factors. We analyzed 4,231 subjects aged 35 to 75 years. Corrected serum calcium increased with both the number of the metabolic syndrome components and the number of non-conventional cardio-metabolic risk factors, independently of the metabolic syndrome and BMI. Among conventional and non-conventional cardio-metabolic risk factors, the strongest positive associations were found for factors related to oxidative stress (uric acid, homocysteine and gamma-glutamyltransferase). Adiponectin had the strongest negative association with corrected serum calcium. CONCLUSIONS/SIGNIFICANCE: Serum calcium was associated with the metabolic syndrome and with non-conventional cardio-metabolic risk factors independently of the metabolic syndrome. Associations with uric acid, homocysteine and gamma-glutamyltransferase were the strongest. These novel findings suggest that serum calcium levels may be associated with cardiovascular risk via oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annual meeting of the French Ion Channels Society, held on the Mediterranean coast of France, is aimed at gathering the international scientific community working on various aspects of ion channels. In this report of the 19th edition of the meeting, held in September 2008, we summarize selected symposia on aspects of the ion channel field from fundamental to clinical research. The meeting is an opportunity for leading investigators as well as young researchers to present and discuss their recent advances and future challenges in the ion channel field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.