184 resultados para COMPOSITIONAL VARIATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High systemic levels of IP-10 at onset of combination therapy for chronic hepatitis C mirror intrahepatic mRNA levels and predict a slower first phase decline in HCV RNA as well as poor outcome. Recently several genome wide association studies have revealed that single nucleotide polymorphisms (SNPs) on chromosome19 within proximity of IL28B predict spontaneous clearance of HCV infection and as therapeutic outcome among patients infected with HCV genotype 1, with three such SNPs being highly predictive: rs12979860, rs12980275, and rs8099917. In the present study, we correlated genetic variations in these SNPs from 253 Caucasian patients with pretreatment plasma levels of IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO). The favorable genetic variations in all three SNPs (CC, AA, and TT respectively) was significantly associated with lower baseline IP-10 (CC vs. CT/TT at rs12979860: median 189 vs. 258 pg/mL, P=0.02, AA vs. AG/GG at rs12980275: median 189 vs. 258 pg/mL, P=0.01, TT vs. TG/GG at rs8099917: median 224 vs. 288 pg/mL, P=0.04), were significantly less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P=0.01 respectively) and had significantly higher baseline viral load than carriers of the SNP genotypes (6.3 vs. 5.9 log 10 IU/mL, P=0.0012, 6.3 vs. 6.0 log 10 IU/mL, P=0.026, and 6.3 vs. 5.8 log 10 IU/mL, P=0.0003 respectively). Among HCV genotype 1 infected homozygous or heterogeneous carriers of the favorable C, A, and T genotypes, lower baseline IP-10 was significantly associated with greater decline in HCV-RNA day 0-4, which translated into increased rates of achieving SVR among homozygous patients with baseline IP-10 below 150 pg/mL (85%, 75%, and 75% respectively). In a multivariate analysis among genotype 1 infected patients, both baseline IP-10 and the SNPs were significant independent predictors of SVR. Conclusion: Baseline plasma IP-10 is significantly associated with IL28B variations, and augments the predictiveness of the first phase decline in HCV RNA and final treatment outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural variation, whether it is caused by copy number variants or present in a balanced form, such as reciprocal translocations and inversions, can have a profound and dramatic effect on the expression of genes mapping within and close to the rearrangement, as well as affecting others genome wide. These effects can be caused by altering the copy number of one or more genes or regulatory elements (dosage effect) or from physical disruption of links between regulatory elements and their associated gene or genes, resulting in perturbation of expression. Similarly, large-scale structural variants can result in genome-wide expression changes by altering the positions that chromosomes occupy within the nucleus, potentially disrupting not only local cis interactions, but also trans interactions that occur throughout the genome. Structural variation is, therefore, a significant factor in the study of gene expression and is discussed here in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative trait loci analysis of natural Arabidopsis thaliana accessions is increasingly exploited for gene isolation. However, to date this has mostly revealed deleterious mutations. Among them, a loss-of-function allele identified the root growth regulator BREVIS RADIX (BRX). Here we present evidence that BRX and the paralogous BRX-LIKE (BRXL) genes are under selective constraint in monocotyledons as well as dicotyledons. Unexpectedly, however, whereas none of the Arabidopsis orthologs except AtBRXL1 could complement brx null mutants when expressed constitutively, nearly all monocotyledon BRXLs tested could. Thus, BRXL proteins seem to be more diversified in dicotyledons than in monocotyledons. This functional diversification was correlated with accelerated rates of sequence divergence in the N-terminal regions. Population genetic analyses of 30 haplotypes are suggestive of an adaptive role of AtBRX and AtBRXL1. In two accessions, Lc-0 and Lov-5, seven amino acids are deleted in the variable region between the highly conserved C-terminal, so-called BRX domains. Genotyping of 42 additional accessions also found this deletion in Kz-1, Pu2-7, and Ws-0. In segregating recombinant inbred lines, the Lc-0 allele (AtBRX(Lc-0)) conferred significantly enhanced root growth. Moreover, when constitutively expressed in the same regulatory context, AtBRX(Lc-0) complemented brx mutants more efficiently than an allele without deletion. The same was observed for AtBRXL1, which compared with AtBRX carries a 13 amino acid deletion that encompasses the deletion found in AtBRX(Lc-0). Thus, the AtBRX(Lc-0) allele seems to contribute to natural variation in root growth vigor and provides a rare example of an experimentally confirmed, hyperactive allelic variant.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex-dependent selection can help maintain sexual dimorphism. When the magnitude of selection exerted on a heritable sex trait differs between the sexes, it may prevent each sex to reach its phenotypic optimum. As a consequence, the benefit of expressing a sex trait to a given value may differ between males and females favouring sex-specific adaptations associated with different values of a sex trait. The level of metabolites regulated by genes that are under sex-dependent selection may therefore covary with the degree of ornamentation differently in the two sexes. We investigated this prediction in the barn owl, a species in which females display on average larger black spots on the plumage than males, a heritable ornament. This melanin-based colour trait is strongly selected in females and weakly counter-selected in males indicating sex-dependent selection. In nestling barn owls, we found that daily variation in baseline corticosterone levels, a key hormone that mediates life history trade-offs, covaries with spot diameter displayed by their biological parents. When their mother displayed larger spots, nestlings had lower corticosterone levels in the morning and higher levels in the evening, whereas the opposite pattern was found with the size of paternal spots. Our study suggests a link between daily regulation of glucocorticoids and sex-dependent selection exerted on sexually dimorphic melanin-based ornaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positive selection is widely estimated from protein coding sequence alignments by the nonsynonymous-to-synonymous ratio omega. Increasingly elaborate codon models are used in a likelihood framework for this estimation. Although there is widespread concern about the robustness of the estimation of the omega ratio, more efforts are needed to estimate this robustness, especially in the context of complex models. Here, we focused on the branch-site codon model. We investigated its robustness on a large set of simulated data. First, we investigated the impact of sequence divergence. We found evidence of underestimation of the synonymous substitution rate for values as small as 0.5, with a slight increase in false positives for the branch-site test. When dS increases further, underestimation of dS is worse, but false positives decrease. Interestingly, the detection of true positives follows a similar distribution, with a maximum for intermediary values of dS. Thus, high dS is more of a concern for a loss of power (false negatives) than for false positives of the test. Second, we investigated the impact of GC content. We showed that there is no significant difference of false positives between high GC (up to similar to 80%) and low GC (similar to 30%) genes. Moreover, neither shifts of GC content on a specific branch nor major shifts in GC along the gene sequence generate many false positives. Our results confirm that the branch-site is a very conservative test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

24S- and 27-hydroxycholesterol are obligatory intermediates of cholesterol catabolism and play an important role in the maintenance of whole-body cholesterol homeostasis. Using an HPLC-MS method for oxysterol quantification, the distribution of esterified and unesterified oxysterols in lipoprotein subfractions as well as the influence of daytime, food intake and menstrual cycle on oxysterol concentrations were investigated in healthy volunteers. Moreover, reference intervals for 24S- and 27-hydroxycholesterol in plasma as well as the corresponding levels for 27-hydroxycholesterol in the HDL subfraction were established in 100 healthy volunteers. Both circulating oxysterols are mainly transported in association with HDL and LDL--primarily in the esterified form. No significant diurnal changes and no variations during menstrual cycle of either absolute or cholesterol-related plasma levels were detected. In contrast to 24S-hydroxycholesterol in plasma and 27-hydroxycholesterol in the HDL subfraction, the 95% reference intervals of 27-hydroxycholesterol both in plasma and the non-HDL subfraction were higher in males than in females. The concentrations of 27-hydroxycholesterol in plasma and the non-HDL subfraction showed strong positive correlations with the concentrations of cholesterol, non-HDL cholesterol and triglycerides. Our data on the lipoprotein distribution of oxysterols as well as on their intra- and inter-individual variation set the stage for future clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that indels in gp120 V4 are associated to the presence of duplicated and palindromic sequences, suggesting that they may be produced by strand-slippage misalignment mechanism. Indels in V4 involved region-specific duplications 9 to 15 bp long, and repeats of various lengths, associated to trinucleotides AAT. No duplications were found in V3 and C3. The frequency of palindromic sequences in individual genes was found to be significantly higher in gp120 (p < or = 3.00E-7), and significantly lower in Tat (p < or = 9.00E-7) than the average frequency calculated over the full genome. The finding of elements of misalignment in association with indels in V4 suggests that these mutations may occur in proviral DNA after integration of HIV into the host genome. It also implies that occurrence of large indels in gp120 is not random but is directed by the presence and distribution of elements of misalignment in the HIV genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although gene by environment interactions may play a key role in the maintenance of genetic polymorphisms, little is known about the ecological factors involved in these interactions. We investigated whether food supply and parasites can mediate covariation between the degree of adult pheomelanin-based coloration, a heritable trait, and offspring body mass in the tawny owl (Strix aluco). We swapped clutches between nests to allocate genotypes randomly among environments. Three weeks after hatching, we challenged the immune system of 80 unrelated nestlings with either a phytohemagglutinin (PHA) or a lipopolysaccharide, surrogates of alternative parasites, and then fed them ad lib. or food-restricted them during the following 6 days in the laboratory. Whatever the immune challenge, nestlings fed ad lib. converted food more efficiently into body mass when their biological mother was dark pheomelanic. In contrast, food-restricted nestlings challenged with PHA lost less body mass when their biological mother was pale pheomelanic. Nestling tawny owls born from differently melanic mothers thus show differing reaction norms relative to food availability and parasitism. This suggests that dark and pale pheomelanic owls reflect alternative adaptations to food availability and parasites, factors known to vary in space and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) are conducted with the promise to discover novel genetic variants associated with diverse traits. For most traits, associated markers individually explain just a modest fraction of the phenotypic variation, but their number can well be in the hundreds. We developed a maximum likelihood method that allows us to infer the distribution of associated variants even when many of them were missed by chance. Compared to previous approaches, the novelty of our method is that it (a) does not require having an independent (unbiased) estimate of the effect sizes; (b) makes use of the complete distribution of P-values while allowing for the false discovery rate; (c) takes into account allelic heterogeneity and the SNP pruning strategy. We applied our method to the latest GWAS meta-analysis results of the GIANT consortium. It revealed that while the explained variance of genome-wide (GW) significant SNPs is around 1% for waist-hip ratio (WHR), the observed P-values provide evidence for the existence of variants explaining 10% (CI=[8.5-11.5%]) of the phenotypic variance in total. Similarly, the total explained variance likely to exist for height is estimated to be 29% (CI=[28-30%]), three times higher than what the observed GW significant SNPs give rise to. This methodology also enables us to predict the benefit of future GWA studies that aim to reveal more associated genetic markers via increased sample size.