212 resultados para CELLULAR-ENERGY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-four hour energy expenditure (24 EE), resting metabolic rate (RMR), spontaneous physical activity and body composition were determined in 7 obese patients (5 females, 2 males, 174 +/- 9% IBW, 38 +/- 2% fat mass) on 2 different occasions: before weight reduction, and after 10 to 16 weeks on a hypocaloric diet as outpatients, the recommended energy intake varying from 3500 to 4700 kJ/day depending on the subject. Mean body weight loss was 12.6 +/- 1.9 kg, ie 13% of initial body weight, 72% being fat. Twenty-four hour energy expenditure (24 EE) was measured in a respiration chamber with all the subjects receiving 10418 kJ/d before weight reduction and an average of 3360 +/- 205 kJ/d while on the diet. When expressed in absolute values, both 24 EE and RMR decreased during the hypocaloric diet from 9819 +/- 442 to 8229 +/- 444 and from 7262 +/- 583 to 6591 +/- 547 kJ/d respectively. On the basis of fat-free-mass (FFM), 24 EE decreased from 168 +/- 6 to 148 +/- 5 kJ/kg FFM/d whereas RMR was unchanged (approximately 120 kJ/kg FFM/d). Approximately one half of the 24 EE reduction (1590 kJ/d) was accounted for by a decrease in RMR, the latter being mainly accounted for by a reduction in FFM. Most of the remaining decline in 24 EE can be explained by a decreased thermic effect of food, and by the reduced cost of physical activity mainly due to a lower body weight. Therefore, there seems little reason to evoke additional mechanisms to explain the decline in energy expenditure during dieting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RésuméL'origine de l'obésité, qui atteint des proportions épidémiques, est complexe. Elle est liée au mode de vie et au comportement des individus par rapport à l'activité physique, expression des choix individuels et de l'interaction avec l'environnement. Les mesures du comportement au niveau de l'activité physique des individus face à leur environnement, la répartition des types d'activité physique, la durée, la fréquence, l'intensité, et la dépense énergétique sont d'une grande importance. Aujourd'hui, il y a un manque de méthodes permettant une évaluation précise et objective de l'activité physique et du comportement des individus. Afin de compléter les recherches relatives à l'activité physique, à l'obésité et à certaines maladies, le premier objectif du travail de thèse était de développer un modèle pour l'identification objective des types d'activité physique dans des conditions de vie réelles et l'estimation de la dépense énergétique basée sur une combinaison de 2 accéléromètres et 1 GPS. Le modèle prend en compte qu'une activité donnée peut être accomplie de différentes façons dans la vie réelle. Les activités quotidiennes ont pu être classées en 8 catégories, de sédentaires à actives, avec une précision de 1 min. La dépense énergétique a pu peut être prédite avec précision par le modèle. Après validation du modèle, le comportement des individus de l'activité physique a été évalué dans une seconde étude. Nous avons émis l'hypothèse que, dans un environnement caractérisé par les pentes, les personnes obèses sont tentées d'éviter les pentes raides et de diminuer la vitesse de marche au cours d'une activité physique spontanée, ainsi que pendant les exercices prescrits et structurés. Nous avons donc caractérisé, par moyen du modèle développé, le comportement des individus obèses dans un environnement vallonné urbain. La façon dont on aborde un environnement valloné dans les déplacements quotidiens devrait également être considérée lors de la prescription de marche supplémentaire afin d'augmenter l'activité physique.SummaryOrigin of obesity, that reached epidemic proportion, is complex and may be linked to different lifestyle and physical activity behaviour. Measurement of physical activity behaviour of individuals towards their environment, the distribution of physical activity in terms of physical activity type, volume, duration, frequency, intensity, and energy expenditure is of great importance. Nowadays, there is a lack of methods for accurate and objective assessment of physical activity and of individuals' physical activity behaviour. In order to complement the research relating physical activity to obesity and related diseases, the first aim of the thesis work was to develop a model for objective identification of physical activity types in real-life condition and energy expenditure based on a combination of 2 accelerometers and 1 GPS device. The model takes into account that a given activity can be achieved in many different ways in real life condition. Daily activities could be classified in 8 categories, as sedentary to active physical activity, within 1 min accuracy, and physical activity patterns determined. The energy expenditure could be predicted accurately with an accuracy below 10%. Furthermore, individuals' physical activity behaviour is expression of individual choices and their interaction with the neighbourhood environment. In a second study, we hypothesized that, in an environment characterized by inclines, obese individuals are tempted to avoid steep positive slopes and to decrease walking speed during spontaneous outdoor physical activity, as well as during prescribed structured bouts of exercise. Finally, we characterized, by mean of the developed model, the physical activity behaviour of obese individuals in a hilly urban environment. Quantifying how one tackles hilly environment or avoids slope in their everyday displacements should be also considered while prescribing extra walking in free-living conditions in order to increase physical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ergonomic unstable shoes, which are widely available to the general population, could increase daily non-exercise activity thermogenesis as the result of increased muscular involvement. We compared the energy expenditure of obese patients during standing and walking with conventional flat-bottomed shoes versus unstable shoes. METHODS: Twenty-nine obese patients were asked to stand quietly and to walk at their preferred walking speed while wearing unstable or conventional shoes. The main outcome measures were metabolic rate of standing and gross and net energy cost of walking, as assessed with indirect calorimetry. RESULTS: Metabolic rate of standing was higher while wearing unstable shoes compared with conventional shoes (1.11 ± 0.20 W/kg(-1) vs 1.06 ± 0.23 W/kg(-1), P=.0098). Gross and net energy cost of walking were higher while wearing unstable shoes compared with conventional shoes (gross: 4.20 ± 0.42 J/kg(-1)/m(-1)vs 4.01 ± 0.39 J/kg(-1)/m(-1), P=.0035; net: 3.37 ± 0.41 J/kg(-1)/m(-1) vs 3.21 ± 0.37 J/kg(-1)/m(-1); P=.032). CONCLUSION: In obese patients, it is possible to increase energy expenditure of standing and walking by means of ergonomic unstable footwear. Long-term use of unstable shoes may eventually prevent a positive energy balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the initial description of astrocytes by neuroanatomists of the nineteenth century, a critical metabolic role for these cells has been suggested in the central nervous system. Nonetheless, it took several technological and conceptual advances over many years before we could start to understand how they fulfill such a role. One of the important and early recognized metabolic function of astrocytes concerns the reuptake and recycling of the neurotransmitter glutamate. But the description of this initial property will be followed by several others including an implication in the supply of energetic substrates to neurons. Indeed, despite the fact that like most eukaryotic non-proliferative cells, astrocytes rely on oxidative metabolism for energy production, they exhibit a prominent aerobic glycolysis capacity. Moreover, this unusual metabolic feature was found to be modulated by glutamatergic activity constituting the initial step of the neurometabolic coupling mechanism. Several approaches, including biochemical measurements in cultured cells, genetic screening, dynamic cell imaging, nuclear magnetic resonance spectroscopy and mathematical modeling, have provided further insights into the intrinsic characteristics giving rise to these key features of astrocytes. This review will provide an account of the different results obtained over several decades that contributed to unravel the complex metabolic nature of astrocytes that make this cell type unique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The site of pharmacological activity of raltegravir is intracellular. Our aim was to determine the extent of raltegravir cellular penetration and whether raltegravir total plasma concentration (C(tot)) predicts cellular concentration (C(cell)). Methods Open-label, prospective, pharmacokinetic study on HIV-infected patients on a stable raltegravir-containing regimen. Plasma and peripheral blood mononuclear cells were simultaneously collected during a 12 h dosing interval after drug intake. C(tot) and C(cell) of raltegravir, darunavir, etravirine, maraviroc and ritonavir were measured by liquid chromatography coupled to tandem mass spectrometry after protein precipitation. Longitudinal mixed effects analysis was applied to the C(cell)/C(tot) ratio. Results Ten HIV-infected patients were included. The geometric mean (GM) raltegravir total plasma maximum concentration (C(max)), minimum concentration (C(min)) and area under the time-concentration curve from 0-12 h (AUC(0-12)) were 1068 ng/mL, 51.1 ng/mL and 4171 ng·h/mL, respectively. GM raltegravir cellular C(max), C(min) and AUC(0-12) were 27.5 ng/mL, 2.9 ng/mL and 165 ng·h/mL, respectively. Raltegravir C(cell) corresponded to 5.3% of C(tot) measured simultaneously. Both concentrations fluctuate in parallel, with C(cell)/C(tot) ratios remaining fairly constant for each patient without a significant time-related trend over the dosing interval. The AUC(cell)/AUC(tot) GM ratios for raltegravir, darunavir and etravirine were 0.039, 0.14 and 1.55, respectively. Conclusions Raltegravir C(cell) correlated with C(tot) (r = 0.86). Raltegravir penetration into cells is low overall (∼5% of plasma levels), with distinct raltegravir cellular penetration varying by as much as 15-fold between patients. The importance of this finding in the context of development of resistance to integrase inhibitors needs to be further investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Role of GLP-1 and GIP in beta cell compensatory responses to beta cell attack and insulin resistance were examined in C57BL/6 mice lacking functional receptors for GLP-1 and GIP. Mice were treated with multiple low dose streptozotocin or hydrocortisone. Islet parameters were assessed by immunohistochemistry and hormone measurements were determined by specific enzyme linked immunoassays. Wild-type streptozotocin controls exhibited severe diabetes, irregularly shaped islets with lymphocytic infiltration, decreased Ki67/TUNEL ratio with decreased beta cell and increased alpha cell areas. GLP-1 and GIP were co-expressed with glucagon and numbers of alpha cells mainly expressing GLP-1 were increased. In contrast, hydrocortisone treatment and induction of insulin resistance increased islet numbers and area, with enhanced beta cell replication, elevated mass of beta and alpha cells, together with co-expression of GLP-1 and GIP with glucagon in islets. The metabolic responses to streptozotocin in GLP-1RKO and GIPRKO mice were broadly similar to C57BL/6 controls, although decreases in islet numbers and size were more severe. In contrast, both groups of mice lacking functional incretin receptors displayed substantially impaired islet adaptations to insulin resistance induced by hydrocortisone, including marked curtailment of expansion of islet area, beta cell mass and islet number. Our observations cannot be explained by simple changes in circulating incretin concentrations, suggesting that intra-islet GLP-1 and GIP make a significant contribution to islet adaptation, particularly expansion of beta cell mass and compensatory islet compensation to hydrocortisone and insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe head injury induces major hormonal, humoral and metabolic changes, characterized by increases in stress hormone secretion, lymphokines production, associated with high lipid and protein catabolism as well as changes in energy expenditure (EE). Numerous factors influence EE in head-injured patients, particularly anthropometric data, body temperature, nutritional support, level of consciousness, muscular tone and activity. Resting EE is usually increased following brain trauma; however, normal or decreased metabolic rates can be observed in curarized patients on mechanical ventilation or in patients receiving high doses of barbiturates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined 24-h energy expenditure (24-h EE) of mother and child was measured with a respiratory chamber (indirect calorimeter) in a group of 16 lactating Gambian women and was compared with that of a control group of 16 nonpregnant, nonlactating (NPNL) Gambian women. Breast-milk production (738 +/- 47 g/d: mean +/- SE) was adequate to allow a normal rate of growth of their 2-mo-old babies (28.0 +/- 2.4 g/d). The combined 24-h EE (mother and child) was higher (8381 +/- 180 kJ/d. P less than 0.001) than that of NPNL women (6092 +/- 121 kJ/d). Two-thirds of this differences could be attributed to the child's EE and one-third to a greater spontaneous physical activity of lactating women. The energy retained by the child for growth in conjunction with the calorimetric measurements allowed the calculation of the extra energy requirements for lactation, which were found to be 2100 kJ/d. These results confirm the values of the current dietary recommendations for lactation, based on the energy cost of milk production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Light is a very important environmental cue for plants. In addition to the energy for photosynthesis, it also provides information that is essential for many processes including seed germination, seedlings development, neighbours detection or transition from the vegetative to the reproductive state. Plants evolved different photoreceptors, among which the phytochromes (PHY), which are red/far-red photoreceptors. This family is composed of 5 members in Arabidopsis thaliana, among which phyB plays the major role for detection of red light. Phytochromes are also able to reset the phase of the circadian clock, which is composed of a complicated network of genes able to produce rhythms of about 24 hours, even in constant conditions. SRR1 (Sensitivity to Red light Reduced) is a gene that was shown to act in the phyB pathway as well as in the circadian clock. It was proposed to play a role in the maintenance of rhythms of the core oscillator because of the circadian phenotype of the srr1 mutant in constant light and in constant darkness. In the present study, we present data confirming the role of SRR1 in the core oscillator. Moreover, we show that SRR1 levels are not limiting for circadian rhythms nor for light perception. We show that the protein levels, the sub-cellular localisation or the complex in which SRR1 is found are not regulated in a circadian manner. Orthologues of SRR1 exist in numerous eukaryotes, forming a new gene family. None of the members of this family have been described. Here, we present data suggesting that the mouse orthologue of SRR1 may not be required for oscillation of the circadian clock of mouse cells in culture. The yeast gene (called BER1 for Benomyl REsistant) was studied to understand the biochemical function of this gene family. Based on synthetic genetic screens, a role of Ber1 was inferred in microtubules dynamics, N-terminal acetylation of protein and proteasome biogenesis. The effect of Ber1 on microtubules was confirmed by the observation that the ber1Δ mutant is more resistant to microtubule-depolymerising drugs and microscopic examination of microtubules in ber 1 Δ mutants. Complementation assays of ber1 Δ mutants and srrl mutants failed to reveal any obvious functional conservation of the mouse, yeast and Arabidopsis orthologues. In conclusion, the SRR1 family might encode genes that either plays different roles in different organisms, or have similar biochemical function but are involved in diverse pathway. Résumé: La lumière est un des facteurs abiotiques les plus important pour les plantes. En plus de l'énergie fournie pour la photosynthèse, elle fourni également de l'information nécessaire pour différents processus comme la germination, le développement des jeunes plantules, la détection de plantes avoisinantes ou encore la transition entre le développement végétatif et reproductif. Plusieurs types de photorécepteurs sont apparus chez les plantes au cours de l'évolution, notamment les phytochromes (PHI, qui perçoivent la lumière rouge et rouge lointaine. Cette famille est composé de 5 membres chez Arabidopsis thaliana, parmi lesquels phyB est le principal récepteur pour la lumière rouge. Les phytochromes sont aussi utiles pour la synchronisation entre les cycles jour-nuit dus à la rotation de la terre et l'horloge circadienne. Cette dernière est composée d'un réseau compliqué qui permet la production de rythmes capables de perdurer même en conditions constantes. SRRI (Sensitivity to Red light Reduced) est un gène qui agit dans la voie de signalisation de phyB ainsi que dans l'horloge circadienne. Il a été proposé que SRRI joue un rôle dans la maintenance des rythmes de l'oscillateur principal à cause des phénotypes circadiens du mutant srrl observés en lumière et en obscurité continue. Dans ce travail, nous présentons des données confirmant le rôle de SRR1 dans l'oscillateur principal. Nous montrons que les niveaux d'expression de SRRI ne sont pas limitants pour les rythmes circadiens ou la perception de la lumière. Enfin, nous montrons que le niveau d'accumulation de la protéine, sa localisation subcellulaire ou encore la taille du complexe dans lequel SRRl est trouvé ne sont pas régulés de façon circadiennes. Des orthologues de SRRI existent chez de nombreux eucaryotes, formant une nouvelle famille de gènes. Aucun des membres de cette famille n'a été étudié avant ce travail. Nous présentons des données suggérant que l'orthologue de la souris n'est peut-être pas requis pour les oscillations de l'horloge circadienne de cellules de souris en culture. Le gène de la levure (appelé SERI pour Benomyl REsistant) a été étudié afin de mieux comprendre la fonction biochimique de cette famille de gène. Une analyse par crible synthétique léthal a révélé un rôle de Ber1 dans la dynamique des microtubules, l'acétylation des protéines en N-terminal et la biogenèse du protéasome. L'effet de Ber1 sur les microtubules a été confirmé par l'observation du mutant ber1 en présence de drogue capable de dépolymériser les microtubules. Celui-ci est plus résistant à ces drogues que le type sauvage. Des expériences de complémentation n'ont pas montré de conservation de la fonction entre SRRI et ses homologues de souris ou de levure. En conclusion, la famille SRRI code pour des gènes qui pourraient avoir soit des rôles différents selon les organismes, soit la même fonction biochimique mais qui serait utile pour des voies de signalisation différentes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. METHODS: In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. RESULTS: Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. CONCLUSIONS: Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progresses in pediatric oncology over the last decades have been dramatic and allow current cure rates above 80%. There are mainly due to multicentre clinical trials aiming at optimizing chemotherapy protocols as well as local therapies in a stepwise approach. Most of the new anticancer drugs currently in development are based on targeted therapies, directed to specific targets present only in or on tumor cells, like growth factor receptors, mechanisms involved in proliferation, DNA repair, apoptosis, tumor invasion or angiogenesis. Concerning bone marrow transplantation also, new strategic approaches are in advanced development. They aim at reducing treatment induced toxicity and enhancing efficacy at the same time. This short paper would like to point out these new technologies, which should be known by the general practitioner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscope is an invaluable device to explore living specimens at a nanometric scale. It permits to image the topography of the sample in 3D, to measure its mechanical properties and to detect the presence of specific molecules bound on its surface. Here we describe the procedure to gather such a data set on living macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical pacing at physiological rate induces myocardial remodeling associated with regional changes in workload, blood flow and oxygen consumption. However, to what extent energy-producing pathways are also modified within the paced heart remains to be investigated. Pacing could particularly affect glycogen metabolism since hypertrophy stimulates glycolysis and increased workload favors glucose over fat oxidation. In order to test this hypothesis, we used the embryonic chick heart model in which ventricular pacing rapidly resulted in thinning of the ventricle wall and thickening of the atrial wall. Hearts of stage 22HH chick embryos were submitted in ovo to asynchronous and intermittent ventricular pacing delivered at physiological rate during 24 h. The resulting alterations of glycogen content were determined in atrium, ventricle and conotruncus of paced and sham-operated hearts. Hemodynamic parameters of the paced and spontaneously beating hearts were derived from computerized image analysis of video recordings. With respect to sham, paced hearts showed a significant decrease in glycogen content (nmoles glucose units/microg protein; mean+/-S.D.) only in atrium (1.48+/-0.40 v 0.84+/-0.34, n=8) and conotruncus (0.75+/-0.28 v 0.42+/-0.23, n=8). Pacing decreased the end diastolic and stroke volumes by 34 and 44%, respectively. Thus, the rapid glycogen depletion in regions remote from the stimulation site appears to be associated with regional changes in workload and remodeling. These findings underscore the importance of the coupling mechanisms between metabolic pathways and myocardial remodeling in the ectopically paced heart.