197 resultados para BIOLOGICAL INVASION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N=34,216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r=0.019, P=0.00054) and CPD (r=0.032, P=8.0 × 10(-7)). These findings replicate in a second large data set (N=127,274, thereof 76,242 smokers) for both SI (P=1.2 × 10(-5)) and CPD (P=9.3 × 10(-5)). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME Les évidences montrant que les changements globaux affectent la biodiversité s'accumulent. Les facteurs les plus influant dans ce processus sont les changements et destructions d'habitat, l'expansion des espèces envahissantes et l'impact des changements climatiques. Une évaluation pertinente de la réponse des espèces face à ces changements est essentielle pour proposer des mesures permettant de réduire le déclin actuel de la biodiversité. La modélisation de la répartition d'espèces basée sur la niche (NBM) est l'un des rares outils permettant cette évaluation. Néanmoins, leur application dans le contexte des changements globaux repose sur des hypothèses restrictives et demande une interprétation critique. Ce travail présente une série d'études de cas investiguant les possibilités et limitations de cette approche pour prédire l'impact des changements globaux. Deux études traitant des menaces sur les espèces rares et en danger d'extinction sont présentées. Les caractéristiques éco-géographiques de 118 plantes avec un haut degré de priorité de conservation sont revues. La prévalence des types de rareté sont analysées en relation avec leur risque d'extinction UICN. La revue souligne l'importance de la conservation à l'échelle régionale. Une évaluation de la rareté à échelle globale peut être trompeuse pour certaine espèces car elle ne tient pas en compte des différents degrés de rareté que présente une espèce à différentes échelles spatiales. La deuxième étude test une approche pour améliorer l'échantillonnage d'espèces rares en incluant des phases itératives de modélisation et d'échantillonnage sur le terrain. L'application de l'approche en biologie de la conservation (illustrée ici par le cas du chardon bleu, Eryngium alpinum), permettrait de réduire le temps et les coûts d'échantillonnage. Deux études sur l'impact des changements climatiques sur la faune et la flore africaine sont présentées. La première étude évalue la sensibilité de 227 mammifères africains face aux climatiques d'ici 2050. Elle montre qu'un nombre important d'espèces pourrait être bientôt en danger d'extinction et que les parcs nationaux africains (principalement ceux situé en milieux xériques) pourraient ne pas remplir leur mandat de protection de la biodiversité dans le futur. La seconde étude modélise l'aire de répartition en 2050 de 975 espèces de plantes endémiques du sud de l'Afrique. L'étude propose l'inclusion de méthodes améliorant la prédiction des risques liés aux changements climatiques. Elle propose également une méthode pour estimer a priori la sensibilité d'une espèce aux changements climatiques à partir de ses propriétés écologiques et des caractéristiques de son aire de répartition. Trois études illustrent l'utilisation des modèles dans l'étude des invasions biologiques. Une première étude relate l'expansion de la laitue sáuvage (Lactuca serriola) vers le nord de l'Europe en lien avec les changements du climat depuis 250 ans. La deuxième étude analyse le potentiel d'invasion de la centaurée tachetée (Centaures maculosa), une mauvaise herbe importée en Amérique du nord vers 1890. L'étude apporte la preuve qu'une espèce envahissante peut occuper une niche climatique différente après introduction sur un autre continent. Les modèles basés sur l'aire native prédisent de manière incorrecte l'entier de l'aire envahie mais permettent de prévoir les aires d'introductions potentielles. Une méthode alternative, incluant la calibration du modèle à partir des deux aires où l'espèce est présente, est proposée pour améliorer les prédictions de l'invasion en Amérique du nord. Je présente finalement une revue de la littérature sur la dynamique de la niche écologique dans le temps et l'espace. Elle synthétise les récents développements théoriques concernant le conservatisme de la niche et propose des solutions pour améliorer la pertinence des prédictions d'impact des changements climatiques et des invasions biologiques. SUMMARY Evidences are accumulating that biodiversity is facing the effects of global change. The most influential drivers of change in ecosystems are land-use change, alien species invasions and climate change impacts. Accurate projections of species' responses to these changes are needed to propose mitigation measures to slow down the on-going erosion of biodiversity. Niche-based models (NBM) currently represent one of the only tools for such projections. However, their application in the context of global changes relies on restrictive assumptions, calling for cautious interpretations. In this thesis I aim to assess the effectiveness and shortcomings of niche-based models for the study of global change impacts on biodiversity through the investigation of specific, unsolved limitations and suggestion of new approaches. Two studies investigating threats to rare and endangered plants are presented. I review the ecogeographic characteristic of 118 endangered plants with high conservation priority in Switzerland. The prevalence of rarity types among plant species is analyzed in relation to IUCN extinction risks. The review underlines the importance of regional vs. global conservation and shows that a global assessment of rarity might be misleading for some species because it can fail to account for different degrees of rarity at a variety of spatial scales. The second study tests a modeling framework including iterative steps of modeling and field surveys to improve the sampling of rare species. The approach is illustrated with a rare alpine plant, Eryngium alpinum and shows promise for complementing conservation practices and reducing sampling costs. Two studies illustrate the impacts of climate change on African taxa. The first one assesses the sensitivity of 277 mammals at African scale to climate change by 2050 in terms of species richness and turnover. It shows that a substantial number of species could be critically endangered in the future. National parks situated in xeric ecosystems are not expected to meet their mandate of protecting current species diversity in the future. The second study model the distribution in 2050 of 975 endemic plant species in southern Africa. The study proposes the inclusion of new methodological insights improving the accuracy and ecological realism of predictions of global changes studies. It also investigates the possibility to estimate a priori the sensitivity of a species to climate change from the geographical distribution and ecological proprieties of the species. Three studies illustrate the application of NBM in the study of biological invasions. The first one investigates the Northwards expansion of Lactuca serriola L. in Europe during the last 250 years in relation with climate changes. In the last two decades, the species could not track climate change due to non climatic influences. A second study analyses the potential invasion extent of spotted knapweed, a European weed first introduced into North America in the 1890s. The study provides one of the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. Models fail to predict the current full extent of the invasion, but correctly predict areas of introduction. An alternative approach, involving the calibration of models with pooled data from both ranges, is proposed to improve predictions of the extent of invasion on models based solely on the native range. I finally present a review on the dynamic nature of ecological niches in space and time. It synthesizes the recent theoretical developments to the niche conservatism issues and proposes solutions to improve confidence in NBM predictions of the impacts of climate change and species invasions on species distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggressive primary tumors express transcriptional signatures that correlate with their metastatic propensity. A number of these signatures have been deployed in the clinic as risk stratification tools. However, the molecular basis of these clinically useful prognostic signatures has remained a largely unresolved area of controversy. We recently found that many prognostic signatures reflect the activity of the MYC oncogene, which in turn regulates tumor metastasis through specific effects on cancer cell invasion and migration. These findings offer a general framework for understanding the molecular basis of clinically prognostic transcriptional signatures and suggest potentially new avenues for studying metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to various pesticides has been characterized in workers and the general population, but interpretation and assessment of biomonitoring data from a health risk perspective remains an issue. For workers, a Biological Exposure Index (BEI®) has been proposed for some substances, but most BEIs are based on urinary biomarker concentrations at Threshold Limit Value - Time Weighted Average (TLV-TWA) airborne exposure while occupational exposure can potentially occurs through multiple routes, particularly by skin contact (i.e.captan, chlorpyrifos, malathion). Similarly, several biomonitoring studies have been conducted to assess environmental exposure to pesticides in different populations, but dose estimates or health risks related to these environmental exposures (mainly through the diet), were rarely characterized. Recently, biological reference values (BRVs) in the form of urinary pesticide metabolites have been proposed for both occupationally exposed workers and children. These BRVs were established using toxicokinetic models developed for each substance, and correspond to safe levels of absorption in humans, regardless of the exposure scenario. The purpose of this chapter is to present a review of a toxicokinetic modeling approach used to determine biological reference values. These are then used to facilitate health risk assessments and decision-making on occupational and environmental pesticide exposures. Such models have the ability to link absorbed dose of the parent compound to exposure biomarkers and critical biological effects. To obtain the safest BRVs for the studied population, simulations of exposure scenarios were performed using a conservative reference dose such as a no-observed-effect level (NOEL). The various examples discussed in this chapter show the importance of knowledge on urine collections (i.e. spot samples and complete 8-h, 12-h or 24-h collections), sampling strategies, metabolism, relative proportions of the different metabolites in urine, absorption fraction, route of exposure and background contribution of prior exposures. They also show that relying on urinary measurements of specific metabolites appears more accurate when applying this approach to the case of occupational exposures. Conversely, relying on semi-specific metabolites (metabolites common to a category of pesticides) appears more accurate for the health risk assessment of environmental exposures given that the precise pesticides to which subjects are exposed are often unknown. In conclusion, the modeling approach to define BRVs for the relevant pesticides may be useful for public health authorities for managing issues related to health risks resulting from environmental and occupational exposures to pesticides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. METHODS: This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 × 0.3 mm(2)). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. RESULTS: Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. CONCLUSION: HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. KEY POINTS: • HR-MRI excludes advanced optic nerve invasion with high negative predictive value. • HR-MRI accurately selects patients eligible for primary enucleation. • Diagnosis of early stages of optic nerve invasion still relies on pathology. • Several physiological MR patterns may mimic optic nerve invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the accuracy of computed tomography angiography (CTA) in predicting arterial encasement by limb tumours, by comparing CTA with surgical findings (gold standard). METHODS: Preoperative CTA images of 55 arteries in 48 patients were assessed for arterial status: cross-sectional CTA images were scored as showing a fat plane between artery and tumour (score 0), slight contact between artery and tumour (score 1), partial arterial encasement (score 2) or total arterial encasement (score 3). Reformatted CTA images were assessed for arterial displacement, rigid wall, stenosis or occlusion. At surgery, arteries were classified as free or surgically encased; 45 arteries were free and 10 were surgically encased. RESULTS: Multivariate logistic regression identified the axial CTA score as a relevant predictor for arterial encasement and subsequent vascular intervention during surgery. All sites where CTA showed a fat plane between the tumour and the artery were classified as free at surgery (n = 28/28). The sensitivity of total arterial encasement on CTA (score 3) was 90%, specificity 93%, accuracy 93% and positive likelihood ratio 13.5. CONCLUSION: CTA evidence of total arterial encasement is a highly specific indication of arterial encasement. The presence of fat between the tumour and the artery on CTA rules out arterial involvement at surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of heterogeneous environments upon the dynamics of invasion and the eradication or control of invasive species is poorly understood, although it is a major challenge for biodiversity conservation. Here, we first investigate how the probability and time for invasion are affected by spatial heterogeneity. Then, we study the effect of control program strategies (e.g. species specificity, spatial scale of action, detection and eradication efficiency) on the success and time of eradication. We find that heterogeneity increases both the invasion probability and the time to invasion. Heterogeneity also reduces the probability of eradication but does not change the time taken for successful eradication. We confirm that early detection of invasive species reduces the time until eradication, but we also demonstrate that this is true only if the local control action is sufficiently efficient. The criterion of removal efficiency is even more important for an eradication program than simply ensuring control effort when the invasive species is not abundant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Following wider acceptance of 'the thrifty phenotype' hypothesis and the convincing evidence that early-life exposures can influence adult health even decades after the exposure, much interest has been placed on the mechanisms through which early-life exposures become biologically embedded. MATERIALS AND METHODS: In this review, we summarize the current literature regarding biological embedding of early-life experiences. To this end, we conducted a literature search to identify studies investigating early-life exposures in relation to DNA methylation changes. In addition, we summarize the challenges faced in investigations of epigenetic effects, stemming from the peculiarities of this emergent and complex field. A proper systematic review and meta-analyses were not feasible given the nature of the evidence. RESULTS: We identified seven studies on early-life socio-economic circumstances, 10 studies on childhood obesity and six studies on early-life nutrition all relating to DNA methylation changes that met the stipulated inclusion criteria. The pool of evidence gathered, albeit small, favours a role of epigenetics and DNA methylation in biological embedding, but replication of findings, multiple comparison corrections, publication bias and causality are concerns remaining to be addressed in future investigations. CONCLUSIONS: Based on these results, we hypothesize that epigenetics, in particular DNA methylation, is a plausible mechanism through which early-life exposures are biologically embedded. This review describes the current status of the field and acts as a stepping stone for future, better designed investigations on how early-life exposures might become biologically embedded through epigenetic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract This paper presents the outcomes from a workshop of the European Network on the Health and Environmental Impact of Nanomaterials (NanoImpactNet). During the workshop, 45 experts in the field of safety assessment of engineered nanomaterials addressed the need to systematically study sets of engineered nanomaterials with specific metrics to generate a data set which would allow the establishment of dose-response relations. The group concluded that international cooperation and worldwide standardization of terminology, reference materials and protocols are needed to make progress in establishing lists of essential metrics. High quality data necessitates the development of harmonized study approaches and adequate reporting of data. Priority metrics can only be based on well-characterized dose-response relations derived from the systematic study of the bio-kinetics and bio-interactions of nanomaterials at both organism and (sub)-cellular levels. In addition, increased effort is needed to develop and validate analytical methods to determine these metrics in a complex matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Radiotherapy is commonly and efficiently used to treat solid cancer in the clinic. Experimental evidence however suggests that radiation can promote tumor progression by inducing chronic modifications of the tumor microenvironment. Clinically, these observations are highly relevant to aggressive tumoral lesions relapsing after radiation therapy, a leading cause of patients' death. The investigation and understanding of the biological mechanisms implicated in the malignant progression of post-radiation relapses are therefore of major importance. Here we used a syngeneic (immunocompetent) breast cancer orthotopic xenograft model, to show that local irradiation of the mammary gland promotes the appearance of an invasive and metastatic tumor phenotype. Previous studies in our laboratory revealed that inhibition of tumor-induced angiogenesis and consequent increase in tumor hypoxia promotes metastasis formation through the activation of pro-invasive programs in the tumor cells. Our results extend these observations suggesting that mammary gland irradiation induces the recruitment of CD11b+ cells to both the primary tumor and the lungs at pre-metastatic stages through the hypoxia-dependent induction of Kit-ligand (KITL) expression in primary tumors. Abrogation of KITL expression in tumor cells prevented CD11 b+ cells accumulation in both the primary tumor and lungs and significantly reduced metastases of tumors growing in irradiated mammary gland. Importantly, irradiated mammary gland enhanced tumor-induced mobilization of circulating CD11b+cKit+ myelomonocytic cells through a HIF1- and KITL-dependent process. By cell transfer experiments, mobilized circulating CD11b+cKit+ cells were shown to supply both tumor- and lungs infiltrating CD11b+ cells. Using a blocking antibody against cKit (the KITL receptor), the mobilization of CD11b+cKit+ ceils was prevented as well as lung metastases derived from tumors growing in irradiated mammary gland. Taken together, these results indicate that tumors growing in a pre-irradiated mammary gland partially promote their malignant progression through the distant mobilization of circulating myelomonocytic precursor cells. They identify KITL inhibition and/or cKit receptor neutralization as potentially promising therapeutic approaches for post-radiation relapses. RESUME La radiothérapie est largement utilisée comme traitement de choix de nombreux types de cancers. L'agressivité des récidives tumorales observée en clinique après radiothérapie suggère cependant que le recours à l'irradiation pourrait dans certains cas accélérer la progression tumorale. De récents travaux expérimentaux ont en effet permis d'appuyer cette hypothèse, en montrant notamment l'effet néfaste des modifications chroniques de l'environnement induites par l'irradiation sur la progression tumorale. A l'aide d'un modèle murin syngénique orthotopique de cancer de sein, nous avons pu montrer que l'irradiation locale de la glande mammaire facilite l'invasion et la dissémination métastatique des cellules tumorales en favorisant le recrutement de cellules myéloïdes CD11 b+ vers la tumeur primaire et les poumons à un stade pré-métastatique. Comme mécanisme impliqué dans le recrutement des cellules CD11b+, nous avons pu observer après irradiation locale de la glande mammaire une expression augmentée de Kit-ligand (KITL) dans la tumeur (induite par l'hypoxie) ainsi que la mobilisation de cellules myéloïdes circulantes exprimant le récepteur cKit et précurseurs des cellules CD11b+ infiltrant la tumeur et les poumons. En empêchant la mobilisation par la tumeur de cellules circulantes cKit+ par des approches à la fois génétique et pharmacologique nous avons pu prévenir l'accumulation de cellules myéloïdes CD11 b+ dans la tumeur primaire et les poumons ainsi que la dissémination métastatique induites par' l'irradiation de la glande mammaire. De façon générale, ces résultats montrent que la progression agressive des tumeurs qui se développent dans un environnement irradié repose à la fois sur l'expression tumorale de KITL et la mobilisation de cellules myéloïdes précurseurs cKit*. Ils auront permis d'identifier KITL et/ou cKit comme des cibles thérapeutiques potentielles intéressantes pour le traitement des récidives tumorales après radiothérapie.