256 resultados para Automatic Image Annotation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé de la thèse Le travail de thèse «VOIR LE MONDE COMME UNE IMAGE. Le schème de l'image mimétique dans la philosophie de Platon (Cratyle, Sophiste, Timée) » d'Alexandre NEVSKY étudie la conception philosophique de l'image chez Platon. En posant la question : qu'est-ce que l'image pour Platon? l'étude se propose, dans un premier temps, d'analyser la manière précise dont l'idée de l'image fonctionne dans l'articulation logique de l'enquête platonicienne, en se basant avant tout sur trois dialogues majeurs où cette idée est explicitement thématisée par Platon lui-même, à savoir le Cratyle, le Sophiste et le Timée. Par une analyse détaillée de ces textes, Alexandre Nevsky essaie de démontrer que l'idée de l'image fonctionne comme un schème euristique dont la logique interne détermine les moments clés dans le déroulement de chaque dialogue examiné, et constitue ainsi une véritable méthode d'investigation philosophique pour Platon. En suivant cette stratégie platonicienne, l'auteur nous montre quel rôle le schème de l'image joue selon Platon d'abord dans la constitution du langage (le Cratyle), puis, dans celle du discours (le Sophiste) et, enfin, dans celle du monde (le Timée). Une telle approche lui permet de revoir l'interprétation traditionnelle de certains passages clés, célèbres pour leurs difficultés, en mettant en évidence la façon dont la nouvelle perspective platonicienne, introduite grâce au schème de l'image, permet de formuler une solution philosophique originale du problème initial. On y trouve ainsi rediscutés, pour ne citer que quelques exemples, la théorie curieuse de l'imitation phonétique et le problème de la justesse propre du nom-image, la définition philosophique de la notion d'image et la distinction platonicienne entre limage-ressemblance et l'image-apparence, la logique paradoxale de l'introduction d'un troisième genre dans la structure ontologique de l'être et la question du sens exact à donner au «discours vraisemblable » de Platon sur la naissance de l'univers. Dans un deuxième temps, cette étude tente de dégager, derrière la méthode heuristique basée sur le schème de l'image, une véritable conception de l'image mimétique chez Platon. L'une des idées principales de la thèse est ici de montrer que cette conception présente une solution philosophique de Platon au problème de l'apparence archaïque. Car, face à la question sophistique : comment une chose - que ce soit le discours ou le monde - peut-elle être une apparence, quelque chose qui n'existe pas? Platon apporte une réponse tout à fait originale elle le peut en tant qu'image. Or, l'image n'est pas une simple apparence illusoire, elle est le reflet d'une autre réalité, indépendante et véritable, que l'on doit supposer, selon Platon, même quand sa nature exacte nous échappe encore. La conception platonicienne de l'image apparaît ainsi comme un pendant indispensable de la théorie des Formes intelligibles et aussi comme son étape préalable au niveau de laquelle l'âme du philosophe, dans son ascension vers la vérité, se retrouve dans un espace intermédiaire, déjà au-delà des illusions du monde phénoménal, mais encore en-deçà des engagements métaphysiques de la théorie des Formes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recurring task in the analysis of mass genome annotation data from high-throughput technologies is the identification of peaks or clusters in a noisy signal profile. Examples of such applications are the definition of promoters on the basis of transcription start site profiles, the mapping of transcription factor binding sites based on ChIP-chip data and the identification of quantitative trait loci (QTL) from whole genome SNP profiles. Input to such an analysis is a set of genome coordinates associated with counts or intensities. The output consists of a discrete number of peaks with respective volumes, extensions and center positions. We have developed for this purpose a flexible one-dimensional clustering tool, called MADAP, which we make available as a web server and as standalone program. A set of parameters enables the user to customize the procedure to a specific problem. The web server, which returns results in textual and graphical form, is useful for small to medium-scale applications, as well as for evaluation and parameter tuning in view of large-scale applications, requiring a local installation. The program written in C++ can be freely downloaded from ftp://ftp.epd.unil.ch/pub/software/unix/madap. The MADAP web server can be accessed at http://www.isrec.isb-sib.ch/madap/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with the development and application of the generic methodology for automatic processing (mapping and classification) of environmental data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve the problem of spatial data mapping (regression). The Probabilistic Neural Network (PNN) is considered as an automatic tool for spatial classifications. The automatic tuning of isotropic and anisotropic GRNN/PNN models using cross-validation procedure is presented. Results are compared with the k-Nearest-Neighbours (k-NN) interpolation algorithm using independent validation data set. Real case studies are based on decision-oriented mapping and classification of radioactively contaminated territories.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine dose thresholds, in term of CTDIvol, where subtle anatomical structures of pediatric CT images becomes no more detectable and compare them to the most recent Reference Dose Levels (DRL) proposed in the UK, Germany and Switzerland. Materials and methods: A GE LightSpeed-Ultra scanner (MSCT 8 slices) was used to perform chest and abdomen acquisitions on 8 patients (age range 2 to 16 years old) to provide a set of gold standard images. Dose reductions were then simulated by introducing image noise on raw data to provide simulated CT images with CTDIvol ranging from 2 to 22 mGy. All images were reviewed and scored independently by four experienced radiologists using the VGA methodology (Visual Grading Analysis) to determine the dose threshold where a significant loss of normal anatomy conspicuity appeared. Data were analyzed with ANOVA and Tukey HSD tests, a p >0.05 was considered to be significant. Results: No significant difference in VGA scoring appeared for CTDIvol leading to image noise levels lower than 10 and 25 HU for respectively abdominal and chest acquisitions. These data can thus be used to set the AEC (automatic exposure control) system of units having similar noise properties than the GE LightSpeed-Ultra used in this study. The present DRLs proposed for pediatric CT acquisitions are compatible with an excellent image quality level. Conclusion: The differences of DRL values proposed in Europe for pediatric acquisitions are marginal and assure a very good image quality level. The results of this study allow to further optimize the acquisition protocol by giving Noise Index value to set the AEC device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Before a patient can be connected to a mechanical ventilator, the controls of the apparatus need to be set up appropriately. Today, this is done by the intensive care professional. With the advent of closed loop controlled mechanical ventilation, methods will be needed to select appropriate start up settings automatically. The objective of our study was to test such a computerized method which could eventually be used as a start-up procedure (first 5-10 minutes of ventilation) for closed-loop controlled ventilation. DESIGN: Prospective Study. SETTINGS: ICU's in two adult and one children's hospital. PATIENTS: 25 critically ill adult patients (age > or = 15 y) and 17 critically ill children selected at random were studied. INTERVENTIONS: To stimulate 'initial connection', the patients were disconnected from their ventilator and transiently connected to a modified Hamilton AMADEUS ventilator for maximally one minute. During that time they were ventilated with a fixed and standardized breath pattern (Test Breaths) based on pressure controlled synchronized intermittent mandatory ventilation (PCSIMV). MEASUREMENTS AND MAIN RESULTS: Measurements of airway flow, airway pressure and instantaneous CO2 concentration using a mainstream CO2 analyzer were made at the mouth during application of the Test-Breaths. Test-Breaths were analyzed in terms of tidal volume, expiratory time constant and series dead space. Using this data an initial ventilation pattern consisting of respiratory frequency and tidal volume was calculated. This ventilation pattern was compared to the one measured prior to the onset of the study using a two-tailed paired t-test. Additionally, it was compared to a conventional method for setting up ventilators. The computer-proposed ventilation pattern did not differ significantly from the actual pattern (p > 0.05), while the conventional method did. However the scatter was large and in 6 cases deviations in the minute ventilation of more than 50% were observed. CONCLUSIONS: The analysis of standardized Test Breaths allows automatic determination of an initial ventilation pattern for intubated ICU patients. While this pattern does not seem to be superior to the one chosen by the conventional method, it is derived fully automatically and without need for manual patient data entry such as weight or height. This makes the method potentially useful as a start up procedure for closed-loop controlled ventilation.