219 resultados para Antigen-antibody Binding
Resumo:
Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.
Resumo:
BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Resumo:
The clinical success of adoptive immunotherapy of cancer relies on the selection of target antigens that are highly expressed in tumor cells but absent in essential normal tissues. A group of genes that encode the cancer/testis or cancer germline antigens have been proposed as ideal targets for immunotherapy due to their high expression in multiple cancer types and their restricted expression in immunoprivileged normal tissues. In the present work we report the isolation and characterization of human T cell receptors (TCRs) with specificity for synovial sarcoma X breakpoint 2 (SSX2), a cancer/testis antigen expressed in melanoma, prostate cancer, lymphoma, multiple myeloma and pancreatic cancer, among other tumors. We isolated seven HLA-A2 restricted T cell receptors from natural T cell clones derived from tumor-infiltrated lymph nodes of two SSX2-seropositive melanoma patients, and selected four TCRs for cloning into retroviral vectors. Peripheral blood lymphocytes (PBL) transduced with three of four SSX2 TCRs showed SSX241-49 (KASEKIFYV) peptide specific reactivity, tumor cell recognition and tetramer binding. One of these, TCR-5, exhibited tetramer binding in both CD4 and CD8 cells and was selected for further studies. Antigen-specific and HLA-A*0201-restricted interferon-γ release, cell lysis and lymphocyte proliferation was observed following culture of TCR engineered human PBL with relevant tumor cell lines. Codon optimization was found to increase TCR-5 expression in transduced T cells, and this construct has been selected for development of clinical grade viral vector producing cells. The tumor-specific pattern of expression of SSX2, along with the potent and selective activity of TCR-5, makes this TCR an attractive candidate for potential TCR gene therapy to treat multiple cancer histologies.
Resumo:
The reactivity spectrum of five different monoclonal anti-melanoma antibodies cross-reacting with gliomas and neuroblastomas and one monoclonal anti-glioma antibody cross-reacting with melanomas and neuroblastomas was investigated. Comparison of the binding activity of these monoclonal antibodies for 11 melanoma, seven glioma, and three neuroblastoma cell lines showed that each of these clones had a different pattern of cross-reactivity. The results indicated that the antigenic determinants detected by these antibodies were not associated with the same antigen and thus suggested the existence of at least six different antigens common to melanomas, gliomas, and neuroblastomas. Since all these tumors are known to derive from cells originating embryologically from the neural crest, it can be assumed that the antigens recognized by our monoclonal antibodies are neuroectodermal differentiation antigens. However, absorption with fetal brain homogenates abolished only the binding of monoclonal anti-glioma antibody, but did not modify the binding of monoclonal anti-melanoma antibodies.
Resumo:
Immature T-ALL is a newly defined subgroup of ALL in which the blasts lack the receptor for sheep erythrocytes (ER) and the usual T-cell markers, but express the 40 kDa pan-T surface antigen recognized by our monoclonal antibody LAU-A1. Patients with immature T-ALL represent 10% of all cases of adult ALL. Leukocyte counts are lower and spleen, liver and lymph node enlargement is less prominent, but mediastinal enlargement is more frequent than in mature (ER-positive) T-ALL. 7 patients with immature T-ALL (median age 42 years, range 13-73) were treated with intensified chemotherapy regimens, and only one 47-year-old female entered a short-lived complete remission. The overall survival of our patients was poor (median 7.5 months, with only one patient surviving at 15 months) and seemed not to be influenced by age. Our study indicates that immature T-ALL can only be accurately identified by the use of monoclonal antibodies recognizing the 40 kDa pan-T antigen, and that immature T-ALL is a separate disease entity typified by a poor prognosis.
Resumo:
Purpose/Objective: Phenotypic and functional T cell properties are usually analyzed at the level of defined cell populations. However, large differences between individual T cells may have important functional consequences. To answer this issue, we performed highly sensitive single-cell gene expression profiling, which allows the direct ex vivo characterization of individual virus- and tumor-specific T cells from healthy donors and melanoma patients. Materials and methods: HLA-A*0201-positive patients with stage III/ IV metastatic melanoma were included in a phase I clinical trial (LUD- 00-018). Patients received monthly low-dose of the Melan-AMART- 1 26_35 unmodified natural (EAAGIGILTV) or the analog A27L (ELAGIGILTV) peptides, mixed CPG and IFA. Individual effector memory CD28+ (EM28+) and EM28- tetramer-specific CD8pos T cells were sorted by flow cytometer. Following direct cell lysis and reverse transcription, the resulting cDNA was precipitated and globally amplified. Semi-quantitative PCR was used for gene expression and TCR BV repertoire analyses. Results: We have previously shown that vaccination with the natural Melan-A peptide induced T cells with superior effector functions as compared to the analog peptide optimized for enhanced HLA binding. Here we found that natural peptide vaccination induced EM28+ T cells with frequent co-expression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3 and CCR5) and effector-related genes (IFNG, KLRD1, PRF1 and GZMB), comparable to protective EBV- and CMV-specific T cells. In contrast, memory/homing- and effectorassociated genes were less frequently co-expressed after vaccination with the analog peptide. Conclusions: These findings reveal a previously unknown level of gene expression diversity among vaccine- and virus-specific T cells with the simultaneous co-expression of multiple memory/homing- and effector- related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor- and virus-specific T cells.
Resumo:
BACKGROUND: Food allergy has reached an epidemic level in westernized countries and although central mechanisms have been described, the variability associated with genetic diversity underscores the still unresolved complexity of these disorders. OBJECTIVE: To develop models of food allergy and oral tolerance, both strictly induced by the intestinal route, and to compare antigen-specific responses. METHODS: BALB/c mice were mucosally sensitized to ovalbumin (OVA) in the presence of the mucosal adjuvant cholera toxin, or tolerized by intra-gastric administrations of OVA alone. Antibody titres and cytokines were determined by ELISA, and allergic status was determined through several physiologic parameters including decline in temperature, diarrhoea, mast cell degranulation and intestinal permeability. RESULTS: OVA-specific antibodies (IgE, IgGs and IgA in serum and feces) were produced in sensitized mice exclusively. Upon intra-gastric challenge with OVA, sensitized mice developed anaphylactic reactions associated with a decline of temperature, diarrhoea, degranulation of mast cells, which were only moderately recruited in the small intestine, and increased intestinal permeability. Cytokines produced by immune cells from sensitized mice included T-helper type 2 cytokines (IL-5, IL-13), but also IL-10, IFN-gamma and IL-17. In contrast, all markers of allergy were totally absent in tolerized animals, and yet the latter were protected from subsequent sensitization, demonstrating that oral tolerance took place efficiently. CONCLUSION: This work allows for the first time an appropriate comparison between sensitized and tolerized BALB/c mice towards OVA. It highlights important differences from other models of allergy, and thus questions some of the generally accepted notions of allergic reactions, such as the protective role of IFN-gamma, the importance of antigen-specific secretory IgA and the role of mucosal mast cells in intestinal anaphylaxis. In addition, it suggests that IL-17 might be an effector cytokine in food allergy. Finally, it demonstrates that intestinal permeability towards the allergen is increased during challenge.
Resumo:
Résumé : Les anticorps monoclonaux ont une place de plus en plus prépondérante dans le traitement des lymphomes et leucémies. Dans cette étude, trois anticorps monoclonaux murins, dirigés contre les antigènes CDS, CD71 et HLA-DR exprimés à la surface des cellules de leucémies lymphoïdes chroniques (LLC), ont été évalués. In vitro, les anticorps radiomarqués ont montrés des bonnes liaisons spécifiques sur les différentes cellules cibles. L'anti-CD71 inhibait la prolifération de la plupart des lignées cellulaires testées avec une accumulation des cellules en phase S précoce du cycle cellulaire. L'anti-HLA-DR inhibait aussi la prolifération des lignées leucémique JOK1-5.3 et lymphoïde Daudi. Cette inhibition était associée à une agrégation des cellules. Aucune induction d'apoptose n'a pu être clairement observée avec ces anticorps. L'anti-CD5 n'a montré aucun effet d'inhibition de croissance in vitro. In vivo, l'injection des anticorps individuellement augmentait significativement la survie médiane de souris SCID greffées avec des cellules JOK1-5.3 en i.p. De plus, l'anticorps antiCD5 combiné à l'anti-HLA-DR ou l'anti-CD71, sous certaines conditions, inhibait complètement le développement tumoral dans la quasi totalité des souris traitées avec une augmentation significative de l'efficacité comparée aux anticorps seuls. L'augmentation de l'efficacité thérapeutique des anticorps monoclonaux par les cytokines, dont l'IL-2, a déjà été montrée dans la littérature. Au regard du meilleur comportement de l'IL-2 sous la forme complexée à un anticorps anti-IL-2, nous avons évalué l'efficacité de l'IL-2/anti-IL-2 seul ou combinés au rituximab chez différents modèles tumoraux s.c. (BL60.2, Daudi, Ramos) ou i.p. (JOK15.3) de souris SCID. Le complexe IL-2/anti-IL-2 a montré un effet anti-tumoral dans les souris greffées avec BL60.2 et Daudi. Le traitement IL-2/anti-IL-2 combiné au rituximab a montré une efficacité accrue chez des souris avec BL60.2 par rapport au rituximab seul. En revanche, nous n'avons pas observé de différence avec IL-2/anti-IL-2 seul.Aussi, nous avons évalué l'utilisation de l'agent couplant tri-fonctionnel TMEA pour produire des anticorps bispecifiques. Les expériences préliminaires avec les anticorps rituximab et herceptine, ont mis en évidence sur gel SDS-Page la formation de dimers (~100kDa) et de trimers (~150kDa). Les anticorps bispecifiques sont composés d'un fragment Fab' d'une spécificité et de un ou deux fragments Fab' de l'autre spécificité permettant de moduler la capacité de liaison. Nous avons enfin montré qu'une construction anti-CD5/anti-CD20 était capable de se lier indépendamment ou simultanément à ses antigènes cibles. En conclusion, ce travail a montré l'efficacité thérapeutique des trois anticorps monoclonaux étudiés dans un model de LLC in vivo, et plus particulièrement l'intérêt de certaines combinaisons. D'autre part, nous avons montré l'efficacité anti-tumorale du complexe IL-2/anti-IL-2 in vivo. Des études futures devront permettre de définir un régime favorable pour augmenter l'efficacité de la thérapie avec les anticorps monoclonaux. Enfin, nous avons montré la faisabilité d'utiliser l'agent couplant TMEA pour produire des anticorps bispécifiques fonctionnels.Abstract : Monoclonal antibody (mAb) therapy has become an integral part in different treatments of lymphomas and leukaemias. In this study, we describe three murine mAbs directed against the CD5, CD71 and HLA-DR antigens expressed on chronic lymphocytic leukaemia cells (CLL). In vitro, radiolabeled purified mAbs showed good specific binding on live target cells. Anti-CD71 mAb inhibited proliferation of most cell lines with an accumulation of responding cells in early S-phase of the cell cycle, but without induction of apoptosis. Anti-HLA-DR mAb showed proliferation inhibition of leukaemia JOK1-5.3 and lymphoid Daudi cells, associated with cell aggregation, but again no specific sign of apoptosis was observed. Anti-CD5 mAb did not show any growth inhibitory effect in vitro. In vivo, in a model of SCID mice grafted i.p. with JOK1-5.3 cells, injection of individual mAbs induced significant prolongation of median survival, up to complete inhibition of tumour growth in some mice. Antibody combination of anti-CD5 with anti-HLA-DR or anti-CD71, evaluated in an early treatment, completely inhibited tumour growth in most mice, with a significant efficacy enhancement as compared to mAb used as single agents. Previous reports described the improved efficacy of mAb therapy when combined with cytokines such as IL-2. Relying further on the improved efficacy of IL-2 when administered as an immune complex with anti-IL-2 mAb, we evaluated the anti-tumour effect of the IL-2/anti-IL-2 complex alone or combined with rituximab in subcutaneous (BL60.2, Daudi, Ramos) or i.p. (JOK1-5.3) tumour models in SCID mice. The IL-2/anti-IL-2 complex demonstrated an anti-tumour effect in BL60.2 and Daudi grafted SCID mice. Combination of IL-2/anti-IL-2 treatment with rituximab showed increased efficacy as compared to rituximab alone in BL60.2 grafted mice. However, no difference was observed with IL-2/anti-IL-2 complex alone in these experiments. Finally, we evaluated the feasibility of producing bispecific antibodies (bsAbs) using a trifunctional coupling agent, called TMEA. In preliminary experiments coupling rituximab with herceptine Fab' fragments we obtained the formation of dimers (~100kDa) and trimers (~150kDa) as observed on SDS-Page gel. This method allowed us to produce bsAb with one Fab' fragments of one specificity and one or two Fab' fragments of the second specificity. An anti-CD5/anti-CD20 bsAb was shown to bind targeted antigen either independently or simultaneously. In conclusion, these data show that the three mAbs were all able to induce significant growth inhibition of the JOK1-5.3 cell line in vivo, and efficacy was enhanced when used in combination. IL2/anti-IL-2 complex displayed anti-tumour efficacy in vivo. Further evaluation is necessary to define the most favourable combination to improve mAb therapy. BsAb were produced using the tri-functional agent allowing antibody fragments with relatively good binding. The poor yield obtained with such chemical couplings limited the use of these constructs in preclinical experiments.
Resumo:
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Resumo:
ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.
Resumo:
The interaction of the T cell antigen receptor with a photoreactive antigenic peptide derivative bound covalently to the H-2Kd (Kd) molecule was studied by photoaffinity labeling on cloned, CD8 positive cytotoxic T lymphocytes. The Kd-restricted Plasmodium berghei circumsporozoite peptide 253-260 (YIPS-AEKI) was conjugated with iodo-4-azidosalicylic acid at the N terminus and with 4-azidobenzoic acid at the T cell receptor residue Lys-259. Cell-associated or soluble Kd molecules were photoaffinity-labeled with the peptide derivative by selective photoactivation of the N-terminal photoreactive group. Incubation of cell-associated or soluble covalent Kd-peptide derivative complexes (ligands) with cytotoxic T lymphocytes that recognized this peptide derivative and activation of the orthogonal photoreactive group resulted in specific photoaffinity labeling of the T cell receptor. The labeling was inhibitable by an anti-Kd antibody and was absent on Kd-restricted cytotoxic T lymphocytes of different specificity. The binding of the soluble ligand reached a maximum after 2-4 min at 37 degrees C, after 30 min at 18 degrees C, and after 3 h at 4 degrees C. In contrast, binding of the cell-associated ligand reached a transient maxima after 50 and 110 min at 37 and 18 degrees C, respectively. The degree of binding at 37 degrees C was approximately 30% lower than that at 18 degrees C. No binding took place at 4 degrees C. Inhibition studies with antibodies and drugs indicated that the binding of the cell-associated, but not the soluble ligand, was highly dependent on T cell-target cell conjugate formation, whereas the binding of the soluble ligand was greatly dependent on CD8.
Resumo:
T lymphocytes recognize antigen in the form of peptides that associate with specific alleles of class I or class II major histocompatibility (MHC) molecules. By contrast with the clear MHC allele-specific binding of peptides to purified class II molecules purified solubilized class I molecules either bind relatively poorly or show degenerate specificity. Using photo-affinity labelling, we demonstrate here the specific interaction of peptides with cell-associated MHC class I molecules and show that this involves metabolically active processes.
Resumo:
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.
Resumo:
As part of an ongoing effort to improve the technique of immunoscintigraphy for the detection of human carcinomas with radiolabeled monoclonal antibodies (MABs) to carcinoembryonic antigen (CEA), we have developed a series of MABs to CEA and have studied the effects of low- and physiological molarity buffers on their CEA binding and affinity, as well as their cross-reactivity with granulocyte glycoprotein(s). These in vitro results in different buffer systems were then correlated with the use of these MABs to CEA in the detection of human colon carcinoma grafts in nude mice. Our results show that the binding of CEA by some MABs is influenced by ionic strength and that this may be an important factor in their successful use for the immunolocalization of carcinomas in vivo.
Resumo:
Spermatogenesis is a temporally regulated developmental process by which the gonadotropin-responsive somatic Sertoli and Leydig cells act interdependently to direct the maturation of the germinal cells. The metabolism of Sertoli and Leydig cells is regulated by the pituitary gonadotropins FSH and LH, which, in turn, activate adenylate cyclase. Because the cAMP-second messenger pathway is activated by FSH and LH, we postulated that the cAMP-responsive element-binding protein (CREB) plays a physiological role in Sertoli and Leydig cells, respectively. Immunocytochemical analyses of rat testicular sections show a remarkably high expression of CREB in the haploid round spermatids and, to some extent, in pachytene spermatocytes and Sertoli cells. Although most of the CREB antigen is detected in the nuclei, some CREB antigen is also present in the cytoplasm. Remarkably, the cytoplasmic CREB results from the translation of a unique alternatively spliced transcript of the CREB gene that incorporates an exon containing multiple stop codons inserted immediately up-stream of the exons encoding the DNA-binding domain of CREB. Thus, the RNA containing the alternatively spliced exon encodes a truncated transcriptional transactivator protein lacking both the DNA-binding domain and nuclear translocation signal of CREB. Most of the CREB transcripts detected in the germinal cells contain the alternatively spliced exon, suggesting a function of the exon to modulate the synthesis of CREB. In the Sertoli cells we observed a striking cyclical (12-day periodicity) increase in the levels of CREB mRNA that coincides with the splicing out of the restrictive exon containing the stop codons. Because earlier studies established that FSH-stimulated cAMP levels in Sertoli cells are also cyclical, and the CREB gene promoter contains cAMP-responsive enhancers, we suggest that the alternative RNA splicing controls a positive autoregulation of CREB gene expression mediated by cAMP.