158 resultados para Alpine Club
Resumo:
In this study, we used faecal analysis to determine the diet of the alpine mouse Apodemus alpicola in the field for the first time. This species consumes mainly insects in spring and fruits and seeds of small herbaceous dicotyledons in summer and autumn. Compared to the two congeneric species A. flavicollis and A. sylvaticus, which also occur in the Alps, the diet of A. alpicola is rich in contrasts, with a very pronounced difference between spring and summer. The absence of tree seeds also suggests a mostly terrestrial behaviour. We explain these facts by the specificity of the habitat of A. alpicola: the extreme weather conditions produce great seasonal changes in the vegetation, and the rocky ground favours the adaptation to rock climbing rather than to arboreal Living. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Alpine flora and climate change: monitoring of three summits in Valais (Switzerland) during the 20th century Climate change might trigger an upward shift of the flora in the Swiss Alps, especially since these experienced higher change in average than observed on a global scale. Previous investigations in the canton des Grisons (Switzerland) and Austria have revealed an increase of floristic diversity on alpine summits since the beginning of the 20th century. Three summits in Valais were revisited in this study: the Gornergrat (first inventory in 1919), the Torrenthorn (about in 1885) and the Beaufort (about in 1920). Every summit was newly inventoried in 2003 in the framework of the PERMANENT.PLOT.CH project. All showed a strong increase in species richness. On the Gornergrat (3135 m), 16 species were not found anymore, but 35 new ones were observed. The number of species on this exceptionally rich summit rose from 102 to 121. In comparison, the floristic richness increased from 24 to 63 species on the Torrenthorn (2924 m) and from 16 to 48 species on the Beaufort (3048 m). As in previous studies, this increase seems likely to be associated with climate change: the new species prefer, in average, higher temperature conditions than those previously prevailing on the summits. On the Gornergrat and Beaufort, our observations reveal a development of alpine meadows, whereas species typical of rocks and raw soils are predominantly colonising the Torrenthorn. This difference might be related to the important damage caused by wanderers on the vegetation of the Torrenthorn.
Contemporary satire in Chuck Palahniuk's "Fight Club" and "Haunted" and David Fincher's "Fight Club"
Resumo:
Clonally reproducing hemicryptophytic rosette plants are common in the alpine belt. However, their demography, and indirectly their growth and reproductive strategy in these harsh conditions, was rarely studied. We analysed the morphology, clonal reproduction and demography of one such species, Leontopodium alpinum, in two populations of the Swiss Alps. The species forms small colonies of 1-5 (maximum 30) sterile rosettes with a few flowering stalks. After flowering, the apical meristem dies and one or two new axillary buds grow below the previous rosette in the following year, developing into short rhizomes (<2 cm), which decay after four years. The new stalk produces sterile rosettes before flowering after two to four years, depending on climatic conditions. The apical meristem often dies during the sterile stage, and is replaced by a new axillary bud. Levkovitch matrices on two stages (sterile and flowering rosettes) showed that rosette survival and clonal reproduction maintain long-lived populations (λ = 0.96). Elasticities indicated that a change in the survival of sterile rosettes had the strongest effect on population dynamics, and this stage lasts, on average, 6.8 years at 2480 m. Altogether, L. alpinum is following Tomlinson's architectural model. This growth form appears perfectly adapted to harsh alpine conditions: the clonal ramification ensures longevity to genets and the semelparous behaviour of the rosettes allows an efficient flowering, whatever the climatic conditions. L. alpinum appears to follow a common growth model among rosette possessing hemicryptophytes in the alpine belt.
Resumo:
River flow in Alpine environments is likely to be highly sensitive to climate change because of the effects of warming upon snow and ice, and hence the intra-annual distribution of river runoff. It is also likely to be influenced strongly by human impacts both upon hydrology (e.g. flow abstraction) and river regulation. This paper compares the river flow and sediment flux of two Alpine drainage basins over the last 5 to 7 decades, one that is largely unimpacted by human activities, one strongly impacted by flow abstraction for hydroelectricity. The analysis shows that both river flow and sediment transport capacity are strongly dependent upon the effects of temperature and precipitation availability upon snow accumulation. As the latter tends to increase annual maximum flows, and given the non-linear form of most sediment transport laws, current warming trends may lead to increased sedimentation in Alpine rivers. However, extension to a system impacted upon by flow abstraction reveals the dominant effect that human activity can have upon river sedimentation but also how human response to sediment management has co-evolved with climate forcing to make disentangling the two very difficult.
Resumo:
This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.