313 resultados para 3D Interaction
Resumo:
The purpose of this study was to investigate the impact of navigator timing on image quality in navigator-gated and real-time motion-corrected, free-breathing, three-dimensional (3D) coronary MR angiography (MRA) with submillimeter spatial image resolution. Both phantom and in vivo investigations were performed. 3D coronary MRA with real-time navigator technology was applied using variable navigator time delays (time delay between the navigator and imaging sequences) and varying spatial resolutions. Quantitative objective and subjective image quality parameters were assessed. For high-resolution imaging, reduced image quality was found as a function of increasing navigator time delay. Lower spatial resolution coronary MRA showed only minor sensitivity to navigator timing. These findings were consistent among volunteers and phantom experiments. In conclusion, for submillimeter navigator-gated and real-time motion-corrected 3D coronary MRA, shortening the time delay between the navigator and the imaging portion of the sequence becomes increasingly important for improved spatial resolution.
3D seismic facies characterization and geological patterns recognition (Australian North West Shelf)
Resumo:
EXECUTIVE SUMMARY This PhD research, funded by the Swiss Sciences Foundation, is principally devoted to enhance the recognition, the visualisation and the characterization of geobodies through innovative 3D seismic approaches. A series of case studies from the Australian North West Shelf ensures the development of reproducible integrated 3D workflows and gives new insight into local and regional stratigraphic as well as structural issues. This project was initiated in year 2000 at the Geology and Palaeontology Institute of the University of Lausanne (Switzerland). Several collaborations ensured the improvement of technical approaches as well as the assessment of geological models. - Investigations into the Timor Sea structural style were carried out at the Tectonics Special Research Centre of the University of Western Australia and in collaboration with Woodside Energy in Perth. - Seismic analysis and attributes classification approach were initiated with Schlumberger Oilfield Australia in Perth; assessments and enhancements of the integrated seismic approaches benefited from collaborations with scientists from Schlumberger Stavanger Research (Norway). Adapting and refining from "linear" exploration techniques, a conceptual "helical" 3D seismic approach has been developed. In order to investigate specific geological issues this approach, integrating seismic attributes and visualisation tools, has been refined and adjusted leading to the development of two specific workflows: - A stratigraphic workflow focused on the recognition of geobodies and the characterization of depositional systems. Additionally, it can support the modelling of the subsidence and incidentally the constraint of the hydrocarbon maturity of a given area. - A structural workflow used to quickly and accurately define major and secondary fault systems. The integration of the 3D structural interpretation results ensures the analysis of the fault networks kinematics which can affect hydrocarbon trapping mechanisms. The application of these integrated workflows brings new insight into two complex settings on the Australian North West Shelf and ensures the definition of astonishing stratigraphic and structural outcomes. The stratigraphic workflow ensures the 3D characterization of the Late Palaeozoic glacial depositional system on the Mermaid Nose (Dampier Subbasin, Northern Carnarvon Basin) that presents similarities with the glacial facies along the Neotethys margin up to Oman (chapter 3.1). A subsidence model reveals the Phanerozoic geodynamic evolution of this area (chapter 3.2) and emphasizes two distinct mode of regional extension for the Palaeozoic (Neotethys opening) and Mesozoic (abyssal plains opening). The structural workflow is used for the definition of the structural evolution of the Laminaria High area (Bonaparte Basin). Following a regional structural characterization of the Timor Sea (chapter 4.1), a thorough analysis of the Mesozoic fault architecture reveals a local rotation of the stress field and the development of reverse structures (flower structures) in extensional setting, that form potential hydrocarbon traps (chapter 4.2). The definition of the complex Neogene structural architecture associated with the fault kinematic analysis and a plate flexure model (chapter 4.3) suggest that the Miocene to Pleistocene reactivation phases recorded at the Laminaria High most probably result from the oblique normal reactivation of the underlying Mesozoic fault planes. This episode is associated with the deformation of the subducting Australian plate. Based on these results three papers were published in international journals and two additional publications will be submitted. Additionally this research led to several communications in international conferences. Although the different workflows presented in this research have been primarily developed and used for the analysis of specific stratigraphic and structural geobodies on the Australian North West Shelf, similar integrated 3D seismic approaches will have applications to hydrocarbon exploration and production phases; for instance increasing the recognition of potential source rocks, secondary migration pathways, additional traps or reservoir breaching mechanisms. The new elements brought by this research further highlight that 3D seismic data contains a tremendous amount of hidden geological information waiting to be revealed and that will undoubtedly bring new insight into depositional systems, structural evolution and geohistory of the areas reputed being explored and constrained and other yet to be constrained. The further development of 3D texture attributes highlighting specific features of the seismic signal, the integration of quantitative analysis for stratigraphic and structural processes, the automation of the interpretation workflow as well as the formal definition of "seismo-morphologic" characteristics of a wide range of geobodies from various environments would represent challenging examples of continuation of this present research. The 21st century will most probably represent a transition period between fossil and other alternative energies. The next generation of seismic interpreters prospecting for hydrocarbon will undoubtedly face new challenges mostly due to the shortage of obvious and easy targets. They will probably have to keep on integrating techniques and geological processes in order to further capitalise the seismic data for new potentials definition. Imagination and creativity will most certainly be among the most important quality required from such geoscientists.
Resumo:
BACKGROUND: The magnitude of risk conferred by the interaction between tobacco and alcohol use on the risk of head and neck cancers is not clear because studies have used various methods to quantify the excess head and neck cancer burden. METHODS: We analyzed individual-level pooled data from 17 European and American case-control studies (11,221 cases and 16,168 controls) participating in the International Head and Neck Cancer Epidemiology consortium. We estimated the multiplicative interaction parameter (psi) and population attributable risks (PAR). RESULTS: A greater than multiplicative joint effect between ever tobacco and alcohol use was observed for head and neck cancer risk (psi = 2.15; 95% confidence interval, 1.53-3.04). The PAR for tobacco or alcohol was 72% (95% confidence interval, 61-79%) for head and neck cancer, of which 4% was due to alcohol alone, 33% was due to tobacco alone, and 35% was due to tobacco and alcohol combined. The total PAR differed by subsite (64% for oral cavity cancer, 72% for pharyngeal cancer, 89% for laryngeal cancer), by sex (74% for men, 57% for women), by age (33% for cases <45 years, 73% for cases >60 years), and by region (84% in Europe, 51% in North America, 83% in Latin America). CONCLUSIONS: Our results confirm that the joint effect between tobacco and alcohol use is greater than multiplicative on head and neck cancer risk. However, a substantial proportion of head and neck cancers cannot be attributed to tobacco or alcohol use, particularly for oral cavity cancer and for head and neck cancer among women and among young-onset cases.
Resumo:
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.
Resumo:
The tubero-infundibular and nigrostriatal DA neurone systems of rats respond to systemic (i.p.) injection of alpha-MSH (2-100 microgram/kg). The response of the tubero-infundibular (arcuate) DA neurones, an increase in cellular fluorescence intensity which can be interpreted as a sign of increased neuronal activity, is essentially the same in males, estrogen-progesterone-pretreated ovariectomized females and hypophysectomized males, whereas the type of response elicited by alpha-MSH in the nigral DA neurones depends upon the hormonal state of the animal. Differences between the two DA neurone groups exist also with regard to the effects of peptide fragments containing the two active sites of the alpha-MSH molecule. Results of lesion experiments in the lower brainstem (area postrema) and of blockade of muscarinic mechanisms by atropine further point to differences in the mechanisms underlying the peptide effects on the two neurone systems. The reaction of the tubero-infundibular DA system (which controls the pars intermedia of the pituitary) can be considered to reflect the activation of a feedback mechanism on MSH secretion, while the functional counterpart of the changes observed in the nigral system remains unknown at the present time.
Resumo:
P130 A HIGH-RESOLUTION 2D/3D SEISMIC STUDY OF A THRUST FAULT ZONE IN LAKE GENEVA SWITZERLAND M. SCHEIDHAUER M. BERES D. DUPUY and F. MARILLIER Institute of Geophysics University of Lausanne 1015 Lausanne, Switzerland Summary A high-resolution three-dimensional (3D) seismic reflection survey has been conducted in Lake Geneva near the city of Lausanne Switzerland where the faulted molasse basement (Tertiary sandstones) is overlain by complex Quaternary sedimentary structures. Using a single 48-channel streamer an area of 1200 m x 600 m was surveyed in 10 days. With a 5-m shot spacing and a receiver spacing of 2.5 m in the inline direction and 7.5 m in the crossline direction, a 12-fold data coverage was achieved. A maximum penetration depth of ~150 m was achieved with a 15 cu. in. water gun operated at 140 bars. The multi-channel data allow the determination of an accurate velocity field for 3D processing, and they show particularly clean images of the fault zone and the overlying sediments in horizontal and vertical sections. In order to compare different sources, inline 55 was repeated with a 30/30 and a 15/15 cu. in. double-chamber air gun (Mini GI) operated at 100 and 80 bars, respectively. A maximum penetration depth of ~450 m was achieved with this source.
Resumo:
Pour que deux protagonistes parviennent à communiquer, ils doivent non seulement partager les signes verbaux et/ou non verbaux qu'ils utilisent, mais ils doivent également parvenir à accéder à l'intention communicative de chacun. Ce dernier aspect de la communication a été intimement lié aux significations et aux connaissances que les protagonistes partagent (angl. common ground). Malgré le fait que l'importance des significations partagées ait été soulignée dans la littérature concernant la communication entre adultes, cet aspect n'a pas été étudié en ce qui concerne le développement précoce de la communication. Dans le présent travail, nous suggérons d'investiguer le lien entre les significations partagées entre le jeune enfant et l'adulte et la capacité de l'enfant à communiquer de manière intentionnelle via des gestes. En nous appuyant sur l'approche de la Pragmatique de l'Objet (Moro & Rodríguez, 2005), nous suggérons que les connaissances concernant l'usage culturel de l'objet que construit progressivement l'enfant représentent un type de significations que l'enfant partage avec autrui. 12 dyades mère-enfant ont été enregistrées à l'aide d'une caméra lors d'interactions avec quatre objets. Les observations ont eu lieu au domicile des familles et ont été conduites chaque deuxième mois lorsque les enfants ont été âgés de 8 à 16 mois (groupe 1) et de 16 à 24 mois (groupe 2). Les observations ont été codées pour le niveau de maîtrise de l'usage culturel par l'enfant ainsi que pour la production de gestes par l'enfant et par l'adulte. Nous avons trouvé que plus l'enfant maîtrise les usages culturels des objets, plus il produit de gestes, et plus ces gestes remplissent une fonction communicative explicite. Concernant les gestes de l'adulte, les résultats dévoilent que plus l'enfant maîtrise les usages conventionnels des objets, plus l'adulte adresse des gestes communicatifs à l'enfant, plus ses gestes sont produits de manière complexe et plus l'intention des gestes communicatifs de l'adulte est complexe. Pris ensemble, ces résultats suggèrent que le partage de significations sur l'usage culturel des objets représente un type de connaissances communes qui permettent au bébé et à ses protagonistes de communiquer.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
The aim of this study was to investigate influence of traditional cardiovascular risk factors (CVRF) and subclinical atherosclerosis (ATS) burden on early stages of abdominal aortic diameter (AAD) widening among adults. 2,052 consecutive patients (P) (39 % women), mean age 52 ± 13 years, were prospectively screened for CVRF, ATS, and AAD. B-mode ultrasound was used to evaluate the largest AAD and to detect carotid and femoral atherosclerotic plaques. Mean AAD was 15.2 ± 2.8 mm. Atherosclerotic plaques were detected in 71 % of patients. Significant univariate correlation between AAD, traditional CVRF, and ABS was found. However, multiple regression analysis showed that only seven of them were significantly and weakly correlated with AAD (R² = 0.27, p < 0.001). On the other hand, a multivariate logistic analysis was used to evaluate CVRF impact on enlarged AAD ≥25 mm (EAAD) as compared to those with AAD <25 mm. These factors did not account for more than 30 % of interaction (R² = 0.30, p = 0.001). Furthermore, despite a large proportion of patients with high number of CVRF, and subclinical ATS, rate of patients with AAD ≥25 mm was low (1 %) and scattered regardless their CHD risk score or ATS burden. In conclusion, these results suggest that although some traditional CVRF and presence of ATS are associated with early stages of EAAD, other determinants still need to be identified for a better understanding of abdominal aortic aneurysm pathogenesis.
Resumo:
MOTIVATION: Most bioactive molecules perform their action by interacting with proteins or other macromolecules. However, for a significant fraction of them, the primary target remains unknown. In addition, the majority of bioactive molecules have more than one target, many of which are poorly characterized. Computational predictions of bioactive molecule targets based on similarity with known ligands are powerful to narrow down the number of potential targets and to rationalize side effects of known molecules. RESULTS: Using a reference set of 224 412 molecules active on 1700 human proteins, we show that accurate target prediction can be achieved by combining different measures of chemical similarity based on both chemical structure and molecular shape. Our results indicate that the combined approach is especially efficient when no ligand with the same scaffold or from the same chemical series has yet been discovered. We also observe that different combinations of similarity measures are optimal for different molecular properties, such as the number of heavy atoms. This further highlights the importance of considering different classes of similarity measures between new molecules and known ligands to accurately predict their targets. CONTACT: olivier.michielin@unil.ch or vincent.zoete@unil.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.