140 resultados para 270700 Ecology and Evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asexual lineages can derive from sexual ancestors via different mechanisms and at variable rates, which affects the diversity of the asexual population and thereby its ecological success. We investigated the variation and evolution of reproductive systems in Aptinothrips, a genus of grass thrips comprising four species. Extensive population surveys and breeding experiments indicated sexual reproduction in A. elegans, asexuality in A. stylifer and A. karnyi, and both sexual and asexual lineages in A. rufus. Asexuality in A. stylifer and A. rufus coincides with a worldwide distribution, with sexual A. rufus lineages confined to a limited area. Inference of molecular phylogenies and antibiotic treatment revealed different causes of asexuality in different species. Asexuality in A. stylifer and A. karnyi has most likely genetic causes, while it is induced by endosymbionts in A. rufus. Endosymbiont-community characterization revealed presence of Wolbachia, and lack of other bacteria known to manipulate host reproduction. However, only 69% asexual A. rufus females are Wolbachia-infected, indicating that either an undescribed endosymbiont causes asexuality in this species or that Wolbachia was lost in several lineages that remained asexual. These results open new perspectives for studies on the maintenance of mixed sexual and asexual reproduction in natural populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both development and evolution under chronic malnutrition lead to reduced adult size in Drosophila. We studied the contribution of changes in size vs. number of epidermal cells to plastic and evolutionary reduction of wing size in response to poor larval food. We used flies from six populations selected for tolerance to larval malnutrition and from six unselected control populations, raised either under standard conditions or under larval malnutrition. In the control populations, phenotypic plasticity of wing size was mediated by both cell size and cell number. In contrast, evolutionary change in wing size, which was only observed as a correlated response expressed on standard food, was mediated entirely by reduction in cell number. Plasticity of cell number had been lost in the selected populations, and cell number did not differ between the sexes despite males having smaller wings. Results of this and other experimental evolution studies are consistent with the hypothesis that alleles which increase body size through prolonged growth affect wing size mostly via cell number, whereas alleles which increase size through higher growth rate do so via cell size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though architecture principles were first discussed in the 1990s, they are still perceived as an underexplored topic in enterprise architecture management research. By now, there is an increasing consensus about EA principles' nature, as well as guidelines for their formulation. However, the extant literature remains vague about what can be considered suitable EA design and evolution guidance principles. In addition, empirical insights regarding their role and usefulness in practice are still lacking. Accordingly, this research seeks to address three questions: (1) What are suitable principles to guide EA design and evolution? (2) What usage do EA principles have for practitioners? (3) Which propositions can be derived regarding EA principles' role and application? Opting for exploratory research, we apply a research process covering critical analysis of current publications as well as capturing experts' perceptions. Our research ontologically distinguishes between principles from nonprinciples, proposes a validated set of meta-principles, and clarifies principles' application, role, and usefulness in practice. The explored insights can be used as guidelines in defining suitable principles and turning them into an effective bridge between strategy and design and a guide in design decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat loss and fragmentation due to land use changes are major threats to biodiversity in forest ecosystems, and they are expected to have important impacts on many taxa and at various spatial scales. Species richness and area relationships (SARs) have been used to assess species diversity patterns and drivers, and thereby in the establishment of conservation and management strategies. Here we propose a hierarchical approach to achieve deeper insights on SARs in small forest islets in intensive farmland and to address the impacts of decreasing naturalness on such relationships. In the intensive dairy landscapes of Northwest Portugal, where small forest stands (dominated by pines, eucalypts or both) represent semi-natural habitat islands, 50 small forest stands were selected and surveyed for vascular plant diversity. A hierarchical analytical framework was devised to determine species richness and inter- and intra-patch SARs for the whole set of forest patches (general patterns) and for each type of forest (specific patterns). Differences in SARs for distinct groups were also tested by considering subsets of species (native, alien, woody, and herbaceous). Overall, values for species richness were confirmed to be different between forest patches exhibiting different levels of naturalness. Whereas higher values of plant diversity were found in pine stands, higher values for alien species were observed in eucalypt stands. Total area of forest (inter-patch SAR) was found not to have a significant impact on species richness for any of the targeted groups of species. However, significant intra-patch SARs were obtained for all groups of species and forest types. A hierarchical approach was successfully applied to scrutinise SARs along a gradient of forest naturalness in intensively managed landscapes. Dominant canopy tree and management intensity were found to reflect differently on distinct species groups as well as to compensate for increasing stand area, buffering SARs among patches, but not within patches. Thus, the maintenance of small semi-natural patches dominated by pines, under extensive practices of forest management, will promote native plant diversity while at the same time contributing to limit the expansion of problematic alien invasive species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h(2)=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.