131 resultados para total bacteria
Resumo:
Pigs are very often colonized by Staphylococcus aureus and transmission of such pig-associated S. aureus to humans can cause serious medical, hygiene, and economic problems. The transmission route of zoonotic pathogens colonizing farm animals to humans is not well established and bioaerosols could play an important role. The aim of this study was to assess the potential occupational risk of working with S. aureus-colonized pigs in Switzerland. We estimated the airborne contamination by S. aureus in 37 pig farms (20 nursery and 17 fattening units; 25 in summer, 12 in winter). Quantification of total airborne bacterial DNA, airborne Staphylococcus sp. DNA, fungi, and airborne endotoxins was also performed. In this experiment, the presence of cultivable airborne methicillin-resistant S. aureus (MRSA) CC398 in a pig farm in Switzerland was reported for the first time. Airborne methicillin-sensitive S. aureus (MSSA) was found in ~30% of farms. The average airborne concentration of DNA copy number of total bacteria and Staphylococcus sp. measured by quantitative polymerase chain reaction was very high, respectively reaching values of 75 (± 28) × 10(7) and 35 (± 9.8) × 10(5) copy numbers m(-3) in summer and 96 (± 19) × 10(8) and 40 (± 12) × 10(6) copy numbers m(-3) in winter. Total mean airborne concentrations of endotoxins (1298 units of endotoxin m(-3)) and fungi (5707 colony-forming units m(-3)) exceeded the Swiss recommended values and were higher in winter than in summer. In conclusion, Swiss pig farmers will have to tackle a new emerging occupational risk, which could also have a strong impact on public health. The need to inform pig farmers about biological occupational risks is therefore crucial.
Resumo:
An assessment of wood workers' exposure to airborne cultivable bacteria, fungi, inhalable endotoxins and inhalable organic dust was performed at 12 sawmills that process mainly coniferous wood species. In each plant, samples were collected at four or five different work sites (debarking, sawing, sorting, planing and sawing cockpit) and the efficiency of sampling devices (impinger or filter) for determining endotoxins levels was evaluated. Results show that fungi are present in very high concentrations (up to 35 000 CFU m(-3)) in all sawmills. We also find that there are more bioaerosols at the sorting work site (mean +/- SD: 7723 +/- 9919 CFU m(-3) for total bacteria, 614 +/- 902 CFU m(-3) for Gram-negative, 19 438 +/- 14 246 CFU m(-3) for fungi, 7.0 +/- 9.0 EU m(-3) for endotoxin and 2.9 +/- 4.8 g m(-3) for dust) than at the sawing station (mean +/- SD: 1938 +/- 2478 CFU m(-3) for total bacteria, 141 +/- 206 CFU m(-3) for Gram-negative, 12 207 +/- 10 008 CFU m(-3) for fungi, 2.1 +/- 1.9 EU m(-3) for endotoxin and 0.75 +/- 0.49 mg m(-3) for dust). At the same time, the species composition and concentration of airborne Gram-negative bacteria were studied. Penicillinium sp. were the predominant fungi, while Bacillus sp. and the Pseudomonadacea family were the predominant Gram-positive and Gram-negative bacteria encountered, respectively. [Authors]
Resumo:
Previous studies have demonstrated that poultry house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at three different stages of the birds' growth; samples of air taken from within the breathing zones of individual poultry house employees as they caught the chickens ready to be transported for slaughter were also analysed. Quantitative polymerase chain reaction (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 26 +/- 1.9 mg m(-3) and endotoxin concentration was 6198 +/- 2.3 EU m(-3) air, >6-fold higher than the Swiss occupational recommended value (1000 EU m(-3)). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively, reaching values of 53 (+/-2.6) x 10(7) cells m(-3) air and 62 (+/-1.9) x 10(6) m(-3) air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices
Resumo:
Previous studies have demonstrated that poultry-house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers, on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at 3 different stages of the birds' growth; Samples of air taken from within the breathing zones of individual poultry-house employees as they caught the chickens ready to be transported for slaughter, were also analysed. Quantitative PCR (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 31 ± 4.7 mg/m3, and endotoxin concentration was 11'080 ± 3436 UE/m3 air, more than ten-fold higher than the Swiss occupational recommended value (1000 UE/m3). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively reaching values of 72 (± 11) x107 cells/m3 air and 70 (± 16) x106/m3 air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices.
Resumo:
This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century.
Resumo:
AIMS: To assess the impact of the biocontrol strain Pseudomonas fluorescens CHA0 on a collection of barley rhizosphere bacteria using an agar plate inhibition assay and a plant microcosm, focusing on a CHA0-sensitive member of the Cytophaga-like bacteria (CLB). METHODS AND RESULTS: The effect of strain CHA0 on a collection of barley rhizosphere bacteria, in particular CLB and fluorescent pseudomonads sampled during a growth season, was assessed by a growth inhibition assay. On average, 85% of the bacteria were sensitive in the May sample, while the effect was reduced to around 68% in the July and August samples. In the May sample, around 95% of the CLB and around 45% of the fluorescent pseudomonads were sensitive to strain CHA0. The proportion of CHA0-sensitive CLB and fluorescent pseudomonad isolates decreased during the plant growth season, i.e. in the July and August samples. A particularly sensitive CLB isolate, CLB23, was selected, exposed to strain CHA0 (wild type) and its genetically modified derivatives in the rhizosphere of barley grown in gnotobiotic soil microcosms. Two dry-stress periods were imposed during the experiment. Derivatives of strain CHA0 included antibiotic or exopolysaccharide (EPS) overproducing strains and a dry-stress-sensitive mutant. Despite their inhibitory activity against CLB23 in vitro, neither wild-type strain CHA0, nor any of its derivatives, had a major effect on culturable and total cell numbers of CLB23 during the 23-day microcosm experiment. Populations of all inoculants declined during the two dry-stress periods, with soil water contents below 5% and plants reaching the wilting point, but they recovered after re-wetting the soil. Survival of the dry-stress-sensitive mutant of CHA0 was most affected by the dry periods; however, this did not result in an increased population density of CLB23. CONCLUSIONS: CLB comprise a large fraction of barley rhizosphere bacteria that are sensitive to the biocontrol pseudomonad CHA0 in vitro. However, in plant microcosm experiments with varying soil humidity conditions, CHA0 or its derivatives had no major impact on the survival of the highly sensitive CLB strain, CLB23, during two dry-stress periods and a re-wetting period; all co-existed well in the rhizosphere of barley plants. SIGNIFICANCE AND IMPACT OF THE STUDY: Results indicate a lack of interaction between the biocontrol pseudomonad CHA0 and a sensitive CLB when the complexity increases from agar plate assays to plant microcosm experiments. This suggests the occurrence of low levels of antibiotic production and/or that the two bacterial genera occupy different niches in the rhizosphere.
Resumo:
This study is a long-term analysis of a group of patients with infected arthroplasties of the hip or the knee. We identified 28 patients with an infected arthroplasty (22 hips, 6 knees) documented by bacterial culture or on direct examination. At the time of diagnosis and on follow-up (a mean of 46 months after treatment) we evaluated the clinical picture, the radiological appearances of the articulation and the biological parameters. 19/28 patients showed a typical clinical picture, whereas in 9 others the picture was more doubtful. The treatments were 14 two-stage replacements of the arthroplasties, 7 simple resections, 5 conservative treatments and 2 one-stage replacements. On follow-up, 25 patients were considered as cured of their infection and 3 as failures. From a functional viewpoint, 9 patients showed no limitation, whereas 19 were limited in the daily activity. Half of the patients had no pain. Radiology showed that 20/26 evaluated patients had no signs of recurrence. Paraclinical examinations are important in the diagnosis of persistent low grade infections, particularly the demonstration of bacteria by pre-surgical sampling (fine needle aspiration, culture from draining sinuses). In spite of the cure of infection, the functional and painful sequellae are often considerable. As a result of our experience, we recommend a two-stage surgical procedure. Only when the general condition of the patient is poor, or when the infection is not under control, would we envisage an alternative procedure (arthrodesis, girdelstone, conservative).
Resumo:
Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count nonculturableor non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescencemicroscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the ''impaction on nutrient agar'' method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria. [Authors]
Resumo:
A multiwell plate bioassay was developed using genetically modified bacteria (bioreporter cells) to detect inorganic arsenic extracted from rice. The bacterial cells expressed luciferase upon exposure to arsenite, the activity of which was detected by measurement of cellular bioluminescence. The bioreporter cells detected arsenic in all rice varieties tested, with averages of 0.02-0.15 microg of arsenite equivalent per gram of dry weight and a method detection limit of 6 ng of arsenite per gram of dry rice. This amounted to between approximately 20 and 90% of the total As content reported by chemical methods for the same sample and suggested that a major proportion of arsenic in rice is in the inorganic form. Calibrations of the bioassay with pure inorganic and organic arsenic forms showed that the bacterial cells react to arsenite with highest affinity, followed by arsenate (with 25% response relative to an equivalent arsenite concentration) and trimethylarsine oxide (at 10% relative response). A method for biocompatible arsenic extraction was elaborated, which most optimally consisted of (i) grinding rice to powder, (ii) mixing with an aqueous solution containing pancreatic enzymes, (iii) mechanical shearing, (iv) extraction in mild acid conditions and moderate heat, and (v) centrifugation and pH neutralization. Detection of mainly inorganic arsenic by the bacterial cells may have important advantages for toxicity assessment of rice consumption and would form a good complement to total chemical arsenic determination.
Resumo:
In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems.
Resumo:
Hypogammaglobulinemia develops in 3 to 6% of patients with thymoma and this association is commonly referred to as thymoma with immunodeficiency (formerly Good syndrome). Recurrent infections with encapsulated bacteria and opportunistic infections associated with disorders of both humoral and cell mediated immunity frequently occur in this rare primary, adult-onset immunodeficiency. We report a case of thymoma with immunodeficiency complicated by disseminated herpes simplex virus (HSV) infection and review five additional cases of HSV-related infections reported since 1966 in patients presenting with thymoma with immunodeficiency. Patients presented with epiglottitis, keratitis, recurrent genital herpes, ulcerative dermatitis, and acute hepatitis. Four of the six cases had a fatal outcome, two of which were directly attributable to HSV infection. Since the risk of invasive opportunistic infections is high and the presentation atypical, lymphocyte count and total serum immunoglobulin should be measured regularly in all patients presenting with thymoma with immunodeficiency.
Resumo:
The aim of this retrospective study was to compare the clinical and radiographic results after TKA (PFC, DePuy), performed either by computer assisted navigation (CAS, Brainlab, Johnson&Johnson) or by conventional means. Material and methods: Between May and December 2006 we reviewed 36 conventional TKA performed between 2002 and 2003 (group A) and 37 navigated TKA performed between 2005 and 2006 (group B) by the same experienced surgeon. The mean age in group A was 74 years (range 62-90) and 73 (range 58-85) in group B with a similar age distribution. The preoperative mechanical axes in group A ranged from -13° varus to +13° valgus (mean absolute deviation 6.83°, SD 3.86), in group B from -13° to +16° (mean absolute deviation 5.35, SD 4.29). Patients with a previous tibial osteotomy or revision arthroplasty were excluded from the study. Examination was done by an experienced orthopedic resident independent of the surgeon. All patients had pre- and postoperative long standing radiographs. The IKSS and the WOMAC were utilized to determine the clinical outcome. Patient's degree of satisfaction was assessed on a visual analogous scale (VAS). Results: 32 of the 37 navigated TKAs (86,5%) showed a postoperative mechanical axis within the limits of 3 degrees of valgus or varus deviation compared to only 24 (66%) of the 36 standard TKAs. This difference was significant (p = 0.045). The mean absolute deviation from neutral axis was 3.00° (range -5° to +9°, SD: 1.75) in group A in comparison to 1.54° (range -5° to +4°, SD: 1.41) in group B with a highly significant difference (p = 0.000). Furthermore, both groups showed a significant postoperative improvement of their mean IKSS-values (group A: 89 preoperative to 169 postoperative, group B 88 to 176) without a significant difference between the two groups. Neither the WOMAC nor the patient's degree of satisfaction - as assessed by VAS - showed significant differences. Operation time was significantly higher in group B (mean 119.9 min.) than in group A (mean 99.6 min., p <0.000). Conclusion: Our study showed consistent significant improvement of postoperative frontal alignment in TKA by computer assisted navigation (CAS) compared to standard methods, even in the hands of a surgeon well experienced in standard TKA implantation. However, the follow-up time of this study was not long enough to judge differences in clinical outcome. Thus, the relevance of computer navigation for clinical outcome and survival of TKA remains to be proved in long term studies to justify the longer operation time. References 1 Stulberg SD. Clin Orth Rel Res. 2003;(416):177-84. 2 Chauhan SK. JBJS Br. 2004;86(3):372-7. 3 Bäthis H, et al. Orthopäde. 2006;35(10):1056-65.
Resumo:
While genetic polymorphisms play a paramount role in tuberculosis (TB), less is known about their contribution to the severity of diseases caused by other intracellular bacteria and fastidious microorganisms. We searched electronic databases for observational studies reporting on host factors and genetic predisposition to infections caused by intracellular fastidious bacteria published up to 30 May 2014. The contribution of genetic polymorphisms was documented for TB. This includes genetic defects in the mononuclear phagocyte/T helper cell type 1 (Th1) pathway contributing to disseminated TB disease in children and genome-wide linkage analysis (GWAS) in reactivated pulmonary TB in adults. Similarly, experimental studies supported the role of host genetic factors in the clinical presentation of illnesses resulting from other fastidious intracellular bacteria. These include IL-6 -174G/C or low mannose-binding (MBL) polymorphisms, which are incriminated in chronic pulmonary conditions triggered by C. pneumoniae, type 2-like cytokine secretion polymorphisms, which are correlated with various clinical patterns of M. pneumoniae infections, and genetic variation in the NOD2 gene, which is an indicator of tubal pathology resulting from Chamydia trachomatis infections. Monocyte/macrophage migration and T lymphocyte recruitment defects are corroborated to ineffective granuloma formation observed among patients with chronic Q fever. Similar genetic polymorphisms have also been suggested for infections caused by T. whipplei although not confirmed yet. In conclusion, this review supports the paramount role of genetic factors in clinical presentations and severity of infections caused by intracellular fastidious bacteria. Genetic predisposition should be further explored through such as exome sequencing.
Resumo:
The oxalatecarbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO2. In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.
Resumo:
Methicillin resistant Staphylococcus aureus (MRSA) bacteria have emerged in the early 1980's in numerous health care institutions around the world. The main transmission mechanism within hospitals and healthcare facilities is through the hands of health care workers. Resistant to several antibiotics, the MRSA is one of the most feared pathogens in the hospital setting since it is very difficult to eradicate with the standard treatments. There are still a limited number of anti-MRSA antibiotics but the first cases of resistance to these compounds have already been reported and their frequency is likely to increase in the coming years. Every year, the MRSA infections result in major human and financial costs, due to the high associated mortality and expenses related to the required care. Measures towards a faster detection of resistant bacteria and establishment of appropriate antibiotic treatment parameters are fundamental. Also as part as infection prevention, diminution of bacteria present on the commonly touched surfaces could also limit the spread and selection of antibiotic resistant bacteria. During my thesis, projects were developed around MRSA and antibiotic resistance investigation using innovative technologies. The thesis was subdivided in three main parts with the use of atomic force microscopy AFM for antibiotic resistance detection in part 1, the importance of the bacterial inoculum size in the selection of antibiotic resistance in part 2 and the testing of antimicrobial surfaces creating by sputtering copper onto polyester in part 3. In part 1 the AFM was used two different ways, first for the measurement of stiffness (elasticity) of bacteria and second as a nanosensor for antibiotic susceptibility testing. The stiffness of MRSA with different susceptibility profiles to vancomycin was investigated using the stiffness tomography mode of the AFM and results have demonstrated and increased stiffness in the vancomycin resistant strains that also paralleled with increased thickness of the bacterial cell wall. Parts of the AFM were also used to build a new antibiotic susceptibility-testing device. This nano sensor was able to measure vibrations emitted from living bacteria that ceased definitively upon antibiotic exposure to which they were susceptible but restarted after antibiotic removal to which they were resistant, allowing in a matter of minute the assessment of antibiotic susceptibility determination. In part 2 the inoculum effect (IE) of vancomycin, daptomycin and linezolid and its importance in antibiotic resistance selection was investigated with MRSA during a 15 days of cycling experiment. Results indicated that a high bacterial inoculum and a prolonged antibiotic exposure were two key factors in the in vitro antibiotic resistance selection in MRSA and should be taken into consideration when choosing the drug treatment. Finally in part 3 bactericidal textile surfaces were investigated against MRSA. Polyesters coated after 160 seconds of copper sputtering have demonstrated a high bactericidal activity reducing the bacterial load of at least 3 logio after one hour of contact. -- Au cours des dernières décennies, des bactéries multirésistantes aux antibiotiques (BMR) ont émergé dans les hôpitaux du monde entier. Depuis lors, le nombre de BMR et la prévalence des infections liées aux soins (IAS) continuent de croître et sont associés à une augmentation des taux de morbidité et de mortalité ainsi qu'à des coûts élevés. De plus, le nombre de résistance à différentes classes d'antibiotiques a également augmenté parmi les BMR, limitant ainsi les options thérapeutiques disponibles lorsqu'elles ont liées a des infections. Des mesures visant une détection plus rapide des bactéries résistantes ainsi que l'établissement des paramètres de traitement antibiotiques adéquats sont primordiales lors d'infections déjà présentes. Dans une optique de prévention, la diminution des bactéries présentes sur les surfaces communément touchées pourrait aussi freiner la dissémination et l'évolution des bactéries résistantes. Durant ma thèse, différents projets incluant des nouvelles technologies et évoluant autour de la résistance antibiotique ont été traités. Des nouvelles technologies telles que le microscope à force atomique (AFM) et la pulvérisation cathodique de cuivre (PCC) ont été utilisées, et le Staphylococcus aureus résistant à la méticilline (SARM) a été la principale BMR étudiée. Deux grandes lignes de recherche ont été développées; la première visant à détecter la résistance antibiotique plus rapidement avec l'AFM et la seconde visant à prévenir la dissémination des BMR avec des surfaces crées grâce à la PCC. L'AFM a tout d'abord été utilisé en tant que microscope à sonde locale afin d'investiguer la résistance à la vancomycine chez les SARMs. Les résultats ont démontré que la rigidité de la paroi augmentait avec la résistance à la vancomycine et que celle-ci corrélait aussi avec une augmentation de l'épaisseur des parois, vérifiée grâce à la microscopie électronique. Des parties d'un AFM ont été ensuite utilisées afin de créer un nouveau dispositif de test de sensibilité aux antibiotiques, un nanocapteur. Ce nanocapteur mesure des vibrations produites par les bactéries vivantes. Après l'ajout d'antibiotique, les vibrations cessent définitivement chez les bactéries sensibles à l'antibiotique. En revanche pour les bactéries résistantes, les vibrations reprennent après le retrait de l'antibiotique dans le milieu permettant ainsi, en l'espace de minutes de détecter la sensibilité de la bactérie à un antibiotique. La PCC a été utilisée afin de créer des surfaces bactéricides pour la prévention de la viabilité des BMR sur des surfaces inertes. Des polyesters finement recouverts de cuivre (Cu), connu pour ses propriétés bactéricides, ont été produits et testés contre des SARMs. Une méthode de détection de viabilité des bactéries sur ces surfaces a été mise au point, et les polyesters obtenus après 160 secondes de pulvérisation au Cu ont démontré une excellente activité bactéricide, diminuant la charge bactérienne d'au moins 3 logio après une heure de contact. En conclusion, l'utilisation de nouvelles technologies nous a permis d'évoluer vers de méthodes de détection de la résistance antibiotique plus rapides ainsi que vers le développement d'un nouveau type de surface bactéricide, dans le but d'améliorer le diagnostic et la gestion des BMR.