64 resultados para textual complexity assessment
Resumo:
AbstractIn addition to genetic changes affecting the function of gene products, changes in gene expression have been suggested to underlie many or even most of the phenotypic differences among mammals. However, detailed gene expression comparisons were, until recently, restricted to closely related species, owing to technological limitations. Thus, we took advantage of the latest technologies (RNA-Seq) to generate extensive qualitative and quantitative transcriptome data for a unique collection of somatic and germline tissues from representatives of all major mammalian lineages (placental mammals, marsupials and monotremes) and birds, the evolutionary outgroup.In the first major project of my thesis, we performed global comparative analyses of gene expression levels based on these data. Our analyses provided fundamental insights into the dynamics of transcriptome change during mammalian evolution (e.g., the rate of expression change across species, tissues and chromosomes) and allowed the exploration of the functional relevance and phenotypic implications of transcription changes at a genome-wide scale (e.g., we identified numerous potentially selectively driven expression switches).In a second project of my thesis, which was also based on the unique transcriptome data generated in the context of the first project we focused on the evolution of alternative splicing in mammals. Alternative splicing contributes to transcriptome complexity by generating several transcript isoforms from a single gene, which can, thus, perform various functions. To complete the global comparative analysis of gene expression changes, we explored patterns of alternative splicing evolution. This work uncovered several general and unexpected patterns of alternative splicing evolution (e.g., we found that alternative splicing evolves extremely rapidly) as well as a large number of conserved alternative isoforms that may be crucial for the functioning of mammalian organs.Finally, the third and final project of my PhD consisted in analyzing in detail the unique functional and evolutionary properties of the testis by exploring the extent of its transcriptome complexity. This organ was previously shown to evolve rapidly both at the phenotypic and molecular level, apparently because of the specific pressures that act on this organ and are associated with its reproductive function. Moreover, my analyses of the amniote tissue transcriptome data described above, revealed strikingly widespread transcriptional activity of both functional and nonfunctional genomic elements in the testis compared to the other organs. To elucidate the cellular source and mechanisms underlying this promiscuous transcription in the testis, we generated deep coverage RNA-Seq data for all major testis cell types as well as epigenetic data (DNA and histone methylation) using the mouse as model system. The integration of these complete dataset revealed that meiotic and especially post-meiotic germ cells are the major contributors to the widespread functional and nonfunctional transcriptome complexity of the testis, and that this "promiscuous" spermatogenic transcription is resulting, at least partially, from an overall transcriptionally permissive chromatin state. We hypothesize that this particular open state of the chromatin results from the extensive chromatin remodeling that occurs during spermatogenesis which ultimately leads to the replacement of histones by protamines in the mature spermatozoa. Our results have important functional and evolutionary implications (e.g., regarding new gene birth and testicular gene expression evolution).Generally, these three large-scale projects of my thesis provide complete and massive datasets that constitute valuables resources for further functional and evolutionary analyses of mammalian genomes.
Resumo:
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.
Resumo:
OBJECTIVES: To document biopsychosocial profiles of patients with rheumatoid arthritis (RA) by means of the INTERMED and to correlate the results with conventional methods of disease assessment and health care utilization. METHODS: Patients with RA (n = 75) were evaluated with the INTERMED, an instrument for assessing case complexity and care needs. Based on their INTERMED scores, patients were compared with regard to severity of illness, functional status, and health care utilization. RESULTS: In cluster analysis, a 2-cluster solution emerged, with about half of the patients characterized as complex. Complex patients scoring especially high in the psychosocial domain of the INTERMED were disabled significantly more often and took more psychotropic drugs. Although the 2 patient groups did not differ in severity of illness and functional status, complex patients rated their illness as more severe on subjective measures and on most items of the Medical Outcomes Study Short Form 36. Complex patients showed increased health care utilization despite a similar biologic profile. CONCLUSIONS: The INTERMED identified complex patients with increased health care utilization, provided meaningful and comprehensive patient information, and proved to be easy to implement and advantageous compared with conventional methods of disease assessment. Intervention studies will have to demonstrate whether management strategies based on INTERMED profiles can improve treatment response and outcome of complex patients.
Resumo:
BACKGROUND: Adequate pain assessment is critical for evaluating the efficacy of analgesic treatment in clinical practice and during the development of new therapies. Yet the currently used scores of global pain intensity fail to reflect the diversity of pain manifestations and the complexity of underlying biological mechanisms. We have developed a tool for a standardized assessment of pain-related symptoms and signs that differentiates pain phenotypes independent of etiology. METHODS AND FINDINGS: Using a structured interview (16 questions) and a standardized bedside examination (23 tests), we prospectively assessed symptoms and signs in 130 patients with peripheral neuropathic pain caused by diabetic polyneuropathy, postherpetic neuralgia, or radicular low back pain (LBP), and in 57 patients with non-neuropathic (axial) LBP. A hierarchical cluster analysis revealed distinct association patterns of symptoms and signs (pain subtypes) that characterized six subgroups of patients with neuropathic pain and two subgroups of patients with non-neuropathic pain. Using a classification tree analysis, we identified the most discriminatory assessment items for the identification of pain subtypes. We combined these six interview questions and ten physical tests in a pain assessment tool that we named Standardized Evaluation of Pain (StEP). We validated StEP for the distinction between radicular and axial LBP in an independent group of 137 patients. StEP identified patients with radicular pain with high sensitivity (92%; 95% confidence interval [CI] 83%-97%) and specificity (97%; 95% CI 89%-100%). The diagnostic accuracy of StEP exceeded that of a dedicated screening tool for neuropathic pain and spinal magnetic resonance imaging. In addition, we were able to reproduce subtypes of radicular and axial LBP, underscoring the utility of StEP for discerning distinct constellations of symptoms and signs. CONCLUSIONS: We present a novel method of identifying pain subtypes that we believe reflect underlying pain mechanisms. We demonstrate that this new approach to pain assessment helps separate radicular from axial back pain. Beyond diagnostic utility, a standardized differentiation of pain subtypes that is independent of disease etiology may offer a unique opportunity to improve targeted analgesic treatment.
Resumo:
We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
Resumo:
BACKGROUND: The construct of "meaning in life" (MiL) has raised the interest of clinicians working in psycho-oncology and end-of-life care. It has become a topic of scientific investigation where diverse assessment approaches have been applied. Aims: We present a comprehensive systematic review of existing MiL assessment instruments. METHODS: Electronic searches of articles published in English peer-reviewed journals were performed in Psycinfo, Medline, Embase and Cinahl. Instruments are appraised with regard to ten measurement properties. RESULTS: In total, 59 nomothetic and idiographic MiL instruments were identified. Most instruments were developed in North America and meet basic psychometric criteria. They assess presence of and search for MiL, crisis and sources of MiL, meaning making, meaningful activity, MiL in the context of illness, breadth, depth, and other structural indicators. These aspects are largely consistent with existing MiL definitions. Nine out of 59 instruments included cancer populations in test development. CONCLUSIONS: This overview of available instruments underscores the complexity of the construct and might assist researchers to select an appropriate instrument for their research needs. Finally, it points to the need for more integrative theorizing and research on MiL. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
RATIONALE: This study was intended to document the frequency of care complexity in liver transplant candidates, and its association with mood disturbance and poor health-related quality of life (HRQoL). METHODS: Consecutive patients fulfilling inclusion criteria, recruited in three European hospitals, were assessed with INTERMED, a reliable and valid method for the early assessment of bio-psychosocial health risks and needs. Blind to the results, they were also assessed with the Hospital Anxiety and Depression Scale (HADS). HRQoL was documented with the EuroQol and the SF36. Statistical analysis included multivariate and multilevel techniques. RESULTS: Among patients fulfilling inclusion criteria, 60 patients (75.9%) completed the protocol and 38.3% of them were identified as "complex" by INTERMED, but significant between-center differences were found. In support of the working hypothesis, INTERMED scores were significantly associated with all measures of both the SF36 and the EuroQol, and also with the HADS. A one point increase in the INTERMED score results in a reduction in 0.93 points in EuroQol and a 20% increase in HADS score. CONCLUSIONS: INTERMED-measured case complexity is frequent in liver transplant candidates but varies widely between centers. The use of this method captures in one instrument multiple domains of patient status, including mood disturbances and reduced HRQoL.
Resumo:
Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment-scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip-related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
PURPOSE: To evaluate a diagnostic strategy for pulmonary embolism that combined clinical assessment, plasma D-dimer measurement, lower limb venous ultrasonography, and helical computed tomography (CT). METHODS: A cohort of 965 consecutive patients presenting to the emergency departments of three general and teaching hospitals with clinically suspected pulmonary embolism underwent sequential noninvasive testing. Clinical probability was assessed by a prediction rule combined with implicit judgment. All patients were followed for 3 months. RESULTS: A normal D-dimer level (<500 microg/L by a rapid enzyme-linked immunosorbent assay) ruled out venous thromboembolism in 280 patients (29%), and finding a deep vein thrombosis by ultrasonography established the diagnosis in 92 patients (9.5%). Helical CT was required in only 593 patients (61%) and showed pulmonary embolism in 124 patients (12.8%). Pulmonary embolism was considered ruled out in the 450 patients (46.6%) with a negative ultrasound and CT scan and a low-to-intermediate clinical probability. The 8 patients with a negative ultrasound and CT scan despite a high clinical probability proceeded to pulmonary angiography (positive: 2; negative: 6). Helical CT was inconclusive in 11 patients (pulmonary embolism: 4; no pulmonary embolism: 7). The overall prevalence of pulmonary embolism was 23%. Patients classified as not having pulmonary embolism were not anticoagulated during follow-up and had a 3-month thromboembolic risk of 1.0% (95% confidence interval: 0.5% to 2.1%). CONCLUSION: A noninvasive diagnostic strategy combining clinical assessment, D-dimer measurement, ultrasonography, and helical CT yielded a diagnosis in 99% of outpatients suspected of pulmonary embolism, and appeared to be safe, provided that CT was combined with ultrasonography to rule out the disease.
Resumo:
Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrown
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH STRATEGY: We systematically searched the Cochrane Collaboration Tobacco Addiction Group Specialized Register, Cochrane Central Register of Controlled Trials 2008 Issue 4, MEDLINE (1966 to January 2009), and EMBASE (1980 to January 2009). We combined methodological terms with terms related to smoking cessation counselling and biomedical measurements. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. Results were expressed as a relative risk (RR) for smoking cessation with 95% confidence intervals (CI). Where appropriate a pooled effect was estimated using a Mantel-Haenszel fixed effect method. MAIN RESULTS: We included eleven trials using a variety of biomedical tests. Two pairs of trials had sufficiently similar recruitment, setting and interventions to calculate a pooled effect; there was no evidence that CO measurement in primary care (RR 1.06, 95% CI 0.85 to 1.32) or spirometry in primary care (RR 1.18, 95% CI 0.77 to 1.81) increased cessation rates. We did not pool the other seven trials. One trial in primary care detected a significant benefit of lung age feedback after spirometry (RR 2.12; 95% CI 1.24 to 3.62). One trial that used ultrasonography of carotid and femoral arteries and photographs of plaques detected a benefit (RR 2.77; 95% CI 1.04 to 7.41) but enrolled a population of light smokers. Five trials failed to detect evidence of a significant effect. One of these tested CO feedback alone and CO + genetic susceptibility as two different intervention; none of the three possible comparisons detected significant effects. Three others used a combination of CO and spirometry feedback in different settings, and one tested for a genetic marker. AUTHORS' CONCLUSIONS: There is little evidence about the effects of most types of biomedical tests for risk assessment. Spirometry combined with an interpretation of the results in terms of 'lung age' had a significant effect in a single good quality trial. Mixed quality evidence does not support the hypothesis that other types of biomedical risk assessment increase smoking cessation in comparison to standard treatment. Only two pairs of studies were similar enough in term of recruitment, setting, and intervention to allow meta-analysis.
Resumo:
An assessment of sewage workers' exposure to airborne cultivable bacteria, fungi and inhaled endotoxins was performed at 11 sewage treatment plants. We sampled the enclosed and unenclosed treatment areas in each plant and evaluated the influence of seasons (summer and winter) on bioaerosol levels. We also measured personal exposure to endotoxins of workers during special operation where a higher risk of bioaerosol inhalation was assumed. Results show that only fungi are present in significantly higher concentrations in summer than in winter (2331 +/- 858 versus 329 +/- 95 CFU m(-3)). We also found that there are significantly more bacteria in the enclosed area, near the particle grids for incoming water, than in the unenclosed area near the aeration basins (9455 +/- 2661 versus 2435 +/- 985 CFU m(-3) in summer and 11 081 +/- 2299 versus 2002 +/- 839 CFU m(-3) in winter). All bioaerosols were frequently above the recommended values of occupational exposure. Workers carrying out special tasks such as cleaning tanks were exposed to very high levels of endotoxins (up to 500 EU m(-3)) compared to routine work. The species composition and concentration of airborne Gram-negative bacteria were also studied. A broad spectrum of different species within the Pseudomonadaceae and the Enterobacteriaceae families were predominant in nearly all plants investigated. [Authors]
Resumo:
The long term goal of this research is to develop a program able to produce an automatic segmentation and categorization of textual sequences into discourse types. In this preliminary contribution, we present the construction of an algorithm which takes a segmented text as input and attempts to produce a categorization of sequences, such as narrative, argumentative, descriptive and so on. Also, this work aims at investigating a possible convergence between the typological approach developed in particular in the field of text and discourse analysis in French by Adam (2008) and Bronckart (1997) and unsupervised statistical learning.