68 resultados para synchroton-based techniques
Resumo:
The use of the Internet now has a specific purpose: to find information. Unfortunately, the amount of data available on the Internet is growing exponentially, creating what can be considered a nearly infinite and ever-evolving network with no discernable structure. This rapid growth has raised the question of how to find the most relevant information. Many different techniques have been introduced to address the information overload, including search engines, Semantic Web, and recommender systems, among others. Recommender systems are computer-based techniques that are used to reduce information overload and recommend products likely to interest a user when given some information about the user's profile. This technique is mainly used in e-Commerce to suggest items that fit a customer's purchasing tendencies. The use of recommender systems for e-Government is a research topic that is intended to improve the interaction among public administrations, citizens, and the private sector through reducing information overload on e-Government services. More specifically, e-Democracy aims to increase citizens' participation in democratic processes through the use of information and communication technologies. In this chapter, an architecture of a recommender system that uses fuzzy clustering methods for e-Elections is introduced. In addition, a comparison with the smartvote system, a Web-based Voting Assistance Application (VAA) used to aid voters in finding the party or candidate that is most in line with their preferences, is presented.
Resumo:
DNA-based techniques are important tools for species assignment, in particular when identification with morphological criteria is difficult. The aim of this study was to genetically determine the species identity of tree frogs (Hyla spp.) populations from western and northern Switzerland (Swiss Plateau), this area being frequently subjected to introductions of species or sub-species from south of the Alps. We sequenced 261 base pairs of the mitochondrial DNA cytochrome b gene from 24 samples of tree frogs from the Swiss Plateau, Ticino (southern Switzerland) and the Dombes region (Ain, France), and compared them with homologous sequences retrieved from DNA databases. The phylogenetic analyses revealed two distinct clades. The first one is represented by samples of Green tree frog (Hyla arborea) from the Swiss Plateau, France, Germany and Greece, confirming the current knowledge about the species' distribution. The second clade includes samples belonging to the Italian tree frog (Hyla intermedia) from south of the Alps (Ticino and Italy), and unexpectedly from the Grangettes site in western Switzerland. These results suggest the introduction of the Italian tree frog H. intermedia north of the Alps, and raise questions about the management of the Grangettes protected area.
Resumo:
BACKGROUND: Both non-traumatic and traumatic spinal cord injuries have in common that a relatively minor structural lesion can cause profound sensorimotor and autonomous dysfunction. Besides treating the cause of the spinal cord injury the main goal is to restore lost function as far as possible. AIM: This article provides an overview of current innovative diagnostic (imaging) and therapeutic approaches (neurorehabilitation and neuroregeneration) aiming for recovery of function after non-traumatic and traumatic spinal cord injuries. MATERIAL AND METHODS: An analysis of the current scientific literature regarding imaging, rehabilitation and rehabilitation strategies in spinal cord disease was carried out. RESULTS: Novel magnetic resonance imaging (MRI) based techniques (e.g. diffusion-weighted MRI and functional MRI) allow visualization of structural reorganization and specific neural activity in the spinal cord. Robotics-driven rehabilitative measures provide training of sensorimotor function in a targeted fashion, which can even be continued in the homecare setting. From a preclinical point of view, defined stem cell transplantation approaches allow for the first time robust structural repair of the injured spinal cord. CONCLUSION: Besides well-established neurological and functional scores, MRI techniques offer the unique opportunity to provide robust and reliable "biomarkers" for restorative therapeutic interventions. Function-oriented robotics-based rehabilitative interventions alone or in combination with stem cell based therapies represent promising approaches to achieve substantial functional recovery, which go beyond current rehabilitative treatment efforts.
Resumo:
ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.
Resumo:
Avalanche forecasting is a complex process involving the assimilation of multiple data sources to make predictions over varying spatial and temporal resolutions. Numerically assisted forecasting often uses nearest neighbour methods (NN), which are known to have limitations when dealing with high dimensional data. We apply Support Vector Machines to a dataset from Lochaber, Scotland to assess their applicability in avalanche forecasting. Support Vector Machines (SVMs) belong to a family of theoretically based techniques from machine learning and are designed to deal with high dimensional data. Initial experiments showed that SVMs gave results which were comparable with NN for categorical and probabilistic forecasts. Experiments utilising the ability of SVMs to deal with high dimensionality in producing a spatial forecast show promise, but require further work.
Resumo:
Breathing-induced bulk motion of the myocardium during data acquisition may cause severe image artifacts in coronary magnetic resonance angiography (MRA). Current motion compensation strategies include breath-holding or free-breathing MR navigator gating and tracking techniques. Navigator-based techniques have been further refined by the applications of sophisticated 2D k-space reordering techniques. A further improvement in image quality and a reduction of relative scanning duration may be expected from a 3D k-space reordering scheme. Therefore, a 3D k-space reordered acquisition scheme including a 3D navigator gated and corrected segmented k-space gradient echo imaging sequence for coronary MRA was implemented. This new zonal motion-adapted acquisition and reordering technique (ZMART) was developed on the basis of a numerical simulation of the Bloch equations. The technique was implemented on a commercial 1.5T MR system, and first phantom and in vivo experiments were performed. Consistent with the results of the theoretical findings, the results obtained in the phantom studies demonstrate a significant reduction of motion artifacts when compared to conventional (non-k-space reordered) gating techniques. Preliminary in vivo findings also compare favorably with the phantom experiments and theoretical considerations. Magn Reson Med 45:645-652, 2001.
Resumo:
Résumé La protéomique basée sur la spectrométrie de masse est l'étude du proteome l'ensemble des protéines exprimées au sein d'une cellule, d'un tissu ou d'un organisme - par cette technique. Les protéines sont coupées à l'aide d'enzymes en plus petits morceaux -les peptides -, et, séparées par différentes techniques. Les différentes fractions contenant quelques centaines de peptides sont ensuite analysées dans un spectromètre de masse. La masse des peptides est enregistrée et chaque peptide est séquentiellement fragmenté pour en obtenir sa séquence. L'information de masse et séquence est ensuite comparée à une base de données de protéines afin d'identifier la protéine d'origine. Dans une première partie, la thèse décrit le développement de méthodes d'identification. Elle montre l'importance de l'enrichissement de protéines comme moyen d'accès à des protéines de moyenne à faible abondance dans le lait humain. Elle utilise des injections répétées pour augmenter la couverture en protéines et la confiance dans l'identification. L'impacte de nouvelle version de base de données sur la liste des protéines identifiées est aussi démontré. De plus, elle utilise avec succès la spectrométrie de masse comme alternative aux anticorps, pour valider la présence de 34 constructions de protéines pathogéniques du staphylocoque doré exprimées dans une souche de lactocoque. Dans une deuxième partie, la thèse décrit le développement de méthodes de quantification. Elle expose de nouvelles approches de marquage des terminus des protéines aux isotopes stables et décrit la première méthode de marquage des groupements carboxyliques au niveau protéine à l'aide de réactifs composé de carbone 13. De plus, une nouvelle méthode, appelée ANIBAL, marquant tous les groupements amines et carboxyliques au niveau de la protéine, est exposée. Summary Mass spectrometry-based proteomics is the study of the proteome -the set of all expressed proteins in a cell, tissue or organism -using mass spectrometry. Proteins are cut into smaller pieces - peptides - using proteolytic enzymes and separated using different separation techniques. The different fractions containing several hundreds of peptides are than analyzed by mass spectrometry. The mass of the peptides entering the instrument are recorded and each peptide is sequentially fragmented to obtain its amino acid sequence. Each peptide sequence with its corresponding mass is then searched against a protein database to identify the protein to which it belongs. This thesis presents new method developments in this field. In a first part, the thesis describes development of identification methods. It shows the importance of protein enrichment methods to gain access to medium-to-low abundant proteins in a human milk sample. It uses repeated injection to increase protein coverage and confidence in identification and demonstrates the impact of new database releases on protein identification lists. In addition, it successfully uses mass spectrometry as an alternative to antibody-based assays to validate the presence of 34 different recombinant constructs of Staphylococcus aureus pathogenic proteins expressed in a Lactococcus lactis strain. In a second part, development of quantification methods is described. It shows new stable isotope labeling approaches based on N- and C-terminus labeling of proteins and describes the first method of labeling of carboxylic groups at the protein level using 13C stable isotopes. In addition, a new quantitative approach called ANIBAL is explained that labels all amino and carboxylic groups at the protein level.
Resumo:
Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.
Resumo:
The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.
Resumo:
Introduction: In order to improve safety of pedicle screw placement several techniques have been developed. More recently robotically assisted pedicle insertion has been introduced aiming at increasing accuracy. The aim of this study was to compare this new technique with the two main pedicle insertion techniques in our unit namely fluoroscopically assisted vs EMG aided insertion. Material and methods: A total of 382 screws (78 thoracic,304 lumbar) were introduced in 64 patients (m/f = 1.37, equally distributed between insertion technique groups) by a single experienced spinal surgeon. From those, 64 (10 thoracic, 54 lumbar) were introduced in 11 patients using a miniature robotic device based on pre operative CT images under fluoroscopic control. 142 (4 thoracic, 138 lumbar) screws were introduced using lateral fluoroscopy in 27 patients while 176 (64 thoracic, 112 lumbar) screws in 26 patients were inserted using both fluoroscopy and EMG monitoring. There was no difference in the distribution of scoliotic spines between the 3 groups (n = 13). Screw position was assessed by an independent observer on CTs in axial, sagittal and coronal planes using the Rampersaud A to D classification. Data of lumbar and thoracic screws were processed separately as well as data obtained from axial, sagittal and coronal CT planes. Results: Intra- and interobserver reliability of the Rampersaud classification was moderate, (0.35 and 0.45 respectively) being the least good on axial plane. The total number of misplaced screws (C&D grades) was generally low (12 thoracic and 12 lumbar screws). Misplacement rates were same in straight and scoliotic spines. The only difference in misplacement rates was observed on axial and coronal images in the EMG assisted thoracic screw group with a higher proportion of C or D grades (p <0.05) in that group. Recorded compound muscle action potentials (CMAP) values of the inserted screws were 30.4 mA for the robot and 24.9mA for the freehand technique with a CI of 3.8 of the mean difference of 5.5 mA. Discussion: Robotic placement did improve the placement of thoracic screws but not that of lumbar screws possibly because our misplacement rates in general near that of published navigation series. Robotically assisted spine surgery might therefore enhance the safety of screw placement in particular in training settings were different users at various stages of their learning curve are involved in pedicle instrumentation.
Resumo:
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.
Resumo:
The Cinque Torri group (Cortina d'Ampezzo, Italy) is an articulated system of unstable carbonatic rock monoliths located in a very important tourism area and therefore characterized by a significant risk. The instability phenomena involved represent an example of lateral spreading developed over a larger deep seated gravitational slope deformation (DSGSD) area. After the recent fall of a monolith of more than 10 000 m3, a scientific study was initiated to monitor the more unstable sectors and to characterize the past movements as a fundamental tool for predicting future movements and hazard assessment. To achieve greater insight on the ongoing lateral spreading process, a method for a quantitative analysis of rotational movements associated with the lateral spreading has been developed, applied and validated. The method is based on: i) detailed geometrical characterization of the area by means of laser scanner techniques; ii) recognition of the discontinuity sets and definition of a reference frame for each set, iii) correlation between the obtained reference frames related to a specific sector and a stable external reference frame, and iv) determination of the 3D rotations in terms of Euler angles to describe the present settlement of the Cinque Torri system with respect to the surrounding stable areas. In this way, significant information on the processes involved in the fragmentation and spreading of a former dolomitic plateau into different rock cliffs has been gained. The method is suitable to be applied to similar case studies.
Resumo:
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous-based buffer for tissue section preparation before matrix-assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water-acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14-day mouse fetus whole-body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on-tissue MALDI analysis compared with solely conventional organic rinsing.
Resumo:
OBJECTIVE: Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. METHODS: 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. RESULTS: QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. CONCLUSIONS: QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.