51 resultados para patent troll
Resumo:
Percutaneous closure of patent foramen ovale (PFO) has been proposed as the treatment of choice for young high-risk patients who suffered cryptogenic stroke and/or peripheral paradoxical embolism. We sought to compare prospectively two different devices used for percutaneous PFO closure.Prospective data were collected on 40 high risk patients (females: 38%, mean age : 44 +/- 11 years, interatrial septal aneurysm >10 mm: 68%) who underwent percutaneous PFO closure after cryptogenic stroke (n = 38) or peripheral paradoxical embolism (n = 2). Chronologically, 20 patients were first treated by a PFO-Star (Cardia, Burnsville, MI) device. Then, 20 other patients received a Starflex occluder (NMT, Boston, MA). The primary endpoint was complete PFO closure at 6 months as assessed by transthoracic contrast echocardiography. Secondary endpoints were major peri- or post procedural complications and clinical recurrence at 1 year follow-up.Baseline clinical and anatomical characteristics were comparable for both groups. Complete PFO closure was observed in 50% (PFO-Star) and 90% (Starflex) of patients (p=0.001) respectively. Major peri-procedural complications occurred in the PFO-star group only: right-sided device thrombus (1 patient) and aorto-right atrial fistula (1 patient). At 1 year follow-up, no clinical recurrence occurred.In conclusion, despite the absence of clinical recurrence in this high-risk population with presumed paradoxical embolism, complete PFO closure at 6 months follow-up was significantly related to the type of closure device used
Resumo:
BACKGROUND AND PURPOSE: A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). METHODS: We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H2O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. RESULTS: Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; P<0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (P<0.001) and in V10-40 than in V10-20 (P<0.01). ABG was not sensitive enough to detect a shunt in 31 patients. CONCLUSIONS: The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO.
Resumo:
The health status of previously premature neonates after closure of a patent ductus arteriosus (PDA) was analyzed in childhood and adolescence. Physician questionnaires were used to study 180 hospital survivors among 210 consecutive premature neonates who underwent PDA closure between 1985 and 2005. Complete follow-up data were obtained for 129 patients (72%). During a median follow-up period of 7 years (range, 2-22 years), three late deaths (2.3%) had occurred. Only 45% of the patients were considered healthy. Morbidity included developmental delay (41.1%), pulmonary illness (12.4%), neurologic impairment (14.7%), hearing impairment (3.9%), gastrointestinal disease (3.1%), and thoracic deformity (1.2%). None of the adverse variables during the neonatal period (intraventricular hemorrhage, bradycardia apnea syndrome, bronchopulmonary dysplasia, pulmonary bleeding, hyaline membrane disease, artificial respiration time [continuous positive airway pressure + intubation], or necrotizing enterocolitis) statistically predicted respective system morbidity at the follow-up evaluation. Hyaline membrane disease (odds ratio, 2.5; p = 0.026) and longer hospitalization time (odds ratio, 1.2 days per 10 hospitalization days; p = 0.032) in the newborn period were significant predictors of an unhealthy outcome at the last follow-up evaluation. Survival until childhood after closure of a hemodynamically significant PDA in premature neonates is satisfactory. However, physical and neurodevelopmental co-morbidity persist for half of the patients, perhaps as a sequela of prematurity unrelated to ductus closure.
Resumo:
Patent foramen ovale and obstructive sleep apnoea are frequently encountered in the general population. Owing to their prevalence, they may coexist fortuitously; however, the prevalence of patent foramen ovale seems to be higher in patients with obstructive sleep apnoea. We have reviewed the epidemiological data, pathophysiology, and the diagnostic and therapeutic options for both patent foramen ovale and obstructive sleep apnoea. We focus on the interesting pathophysiological links that could explain a potential association between both pathologies and their implications, especially on the risk of stroke.
Resumo:
OBJECTIVE: We aimed to create an index to stratify cryptogenic stroke (CS) patients with patent foramen ovale (PFO) by their likelihood that the stroke was related to their PFO. METHODS: Using data from 12 component studies, we used generalized linear mixed models to predict the presence of PFO among patients with CS, and derive a simple index to stratify patients with CS. We estimated the stratum-specific PFO-attributable fraction and stratum-specific stroke/TIA recurrence rates. RESULTS: Variables associated with a PFO in CS patients included younger age, the presence of a cortical stroke on neuroimaging, and the absence of these factors: diabetes, hypertension, smoking, and prior stroke or TIA. The 10-point Risk of Paradoxical Embolism score is calculated from these variables so that the youngest patients with superficial strokes and without vascular risk factors have the highest score. PFO prevalence increased from 23% (95% confidence interval [CI]: 19%-26%) in those with 0 to 3 points to 73% (95% CI: 66%-79%) in those with 9 or 10 points, corresponding to attributable fraction estimates of approximately 0% to 90%. Kaplan-Meier estimated stroke/TIA 2-year recurrence rates decreased from 20% (95% CI: 12%-28%) in the lowest Risk of Paradoxical Embolism score stratum to 2% (95% CI: 0%-4%) in the highest. CONCLUSION: Clinical characteristics identify CS patients who vary markedly in PFO prevalence, reflecting clinically important variation in the probability that a discovered PFO is likely to be stroke-related vs incidental. Patients in strata more likely to have stroke-related PFOs have lower recurrence risk.
Resumo:
OBJECTIVE: To define therapeutic strategy for management of patients with ischemic stroke due to a high probability of paradoxical embolism through a Patent Foramen Ovale (PFO). METHODS: Since 1988 all consecutive patients with cerebrovascular events and PFO from the Stroke Registry of our population-based primary-care center are prospectively studied and followed. Since 1992, among 118 patients with cryptogenic embolic brain infarct or transient ischemic attack (TIA) and PFO, 32 consecutive patients younger than 60 years who presented at least two of the following criteria were admitted for surgery: history of Valsalva strain before stroke (11); multiple clinical events (13); multiple infarcts on brain Magnetic Resonance Imaging (MRI) (15); atrial septal aneurysm (ASA) (16); large right-to-left shunt (> 50 microbubbles) (12). RESULTS: Operative time 135' +/- 33'. CPB time 34' +/- 14'. Aortic crossclamping time 16' +/- 6'. Post-operative bleeding 485 +/- 170 ml. No homologous blood transfusion required. No neurological, cardiac or renal complications. All patients were followed-up corresponding to a cumulative time of 601 patient-months. This revealed no recurrent vascular events nor silent new brain lesions on brain MRI. Systematic simultaneous contrast Trans Esophageal Echocardiography (TEE)-Trans Cranial Doppler showed a small residual interatrial shunt in two patients. CONCLUSION: Surgical closure of a patent foramen ovale can be accomplished with very low morbidity and reduce efficiently the risk of stroke recurrence. It seems to be the option of choice in selected patients with a higher (> 1.5%/year) risk of stroke recurrence.
Resumo:
There is ample epidemiological and anecdotal evidence that a PFO increases the risk of stroke both in young and elderly patients, although only in a modest way: PFOs are more prevalent in patients with cryptogenic (unexplained) stroke than in healthy subjects, and are more prevalent in cryptogenic stroke than in strokes of other causes. Furthermore, multiple case series confirm an association of paradoxical embolism across a PFO in patients with deep vein thrombosis and/or pulmonary emboli.2. Is stroke recurrence risk in PFO-patients really not elevated when compared to PFO-free patients, as suggested by traditional observational studies? This finding is an epidemiological artifact called "the paradox of recurrence risk research" (Dahabreh & Kent, JAMA 2011) and is due to one (minor) risk factor, such as PFO, being wiped out by other, stronger risk factors in the control population.3. Having identified PFO as a risk factor for a first stroke and probably also for recurrences, we have to treat it, because treating risk factors always has paid off. No one would nowadays question the aggressive treatment of other risk factors of stroke such as hypertension, atrial fibrillation, smoking, or hyperlipidemia.4. In order to be effective, the preventive treatment has to control the risk factor (i.e. close effectively the PFO), and has to have little or no side effects. Both these conditions are now fulfilled thanks to increasing expertise of cardiologists with technically advanced closure devices and solid back up by multidisciplinary stroke teams.5. Closing a PFO does not dispense us from treating other stroke risk factors aggressively, given that these are cumulative with PFO.6. The most frequent reason why patients have a stroke recurrence after PFO closure is not that closure is ineffective, but that the initial stroke etiology is insufficiently investigated and not PFO related, and that the recurrence is due to another mechanism because of poor risk factor control.7. Similarly, the randomized CLOSURE study was negative because a) patients were included who had a low chance that their initial event was due to the PFO, b) patients were selected with a low chance that a PFO-related recurrence would occur, c) there was an unacceptable high rate of closure-related side effects, and d) the number of randomized patients was too small for a prevention trial.8. It is only a question of time until a sufficiently large randomized clinical trial with true PFO-related stroke patients and a high PFO-related recurrence risk will be performed and show the effectiveness of this closure9. PFO being a rather modest risk factor for stroke does not mean we should prevent our patients from getting the best available prevention by the best physicians in the best stroke centers Therefore, a PFO-closure performed by an excellent cardiologist following the recommendation of an expert neurovascular specialist after a thorough workup in a leading stroke center is one of the most effective stroke prevention treatments available in 2011.
Resumo:
BACKGROUND: There is considerable interindividual variability in pulmonary artery pressure among high-altitude (HA) dwellers, but the underlying mechanism is not known. At low altitude, a patent foramen ovale (PFO) is present in about 25% of the general population. Its prevalence is increased in clinical conditions associated with pulmonary hypertension and arterial hypoxemia, and it is thought to aggravate these problems. METHODS: We searched for a PFO (transesophageal echocardiography) in healthy HA dwellers (n = 22) and patients with chronic mountain sickness (n = 35) at 3,600 m above sea level and studied its effects (transthoracic echocardiography) on right ventricular (RV) function, pulmonary artery pressure, and vascular resistance at rest and during mild exercise (50 W), an intervention designed to further increase pulmonary artery pressure. RESULTS: The prevalence of PFO (32%) was similar to that reported in low-altitude populations and was not different in participants with and without chronic mountain sickness. Its presence was associated with RV enlargement at rest and an exaggerated increase in right-ventricular-to-right-atrial pressure gradient (25 ± 7 mm Hg vs 15 ± 9 mm Hg, P < .001) and a blunted increase in fractional area change of the right ventricle (3% [-1%, 5%] vs 7% [3%, 16%], P = .008) during mild exercise. CONCLUSIONS: These findings show, we believe for the first time, that although the prevalence of PFO is not increased in HA dwellers, its presence appears to facilitate pulmonary vasoconstriction and RV dysfunction during a mild physical effort frequently associated with daily activity. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
A patent foramen ovale (PFO), present in ∼40% of the general population, is a potential source of right-to-left shunt that can impair pulmonary gas exchange efficiency [i.e., increase the alveolar-to-arterial Po2 difference (A-aDO2)]. Prior studies investigating human acclimatization to high-altitude with A-aDO2 as a key parameter have not investigated differences between subjects with (PFO+) or without a PFO (PFO-). We hypothesized that in PFO+ subjects A-aDO2 would not improve (i.e., decrease) after acclimatization to high altitude compared with PFO- subjects. Twenty-one (11 PFO+) healthy sea-level residents were studied at rest and during cycle ergometer exercise at the highest iso-workload achieved at sea level (SL), after acute transport to 5,260 m (ALT1), and again at 5,260 m after 16 days of high-altitude acclimatization (ALT16). In contrast to PFO- subjects, PFO+ subjects had 1) no improvement in A-aDO2 at rest and during exercise at ALT16 compared with ALT1, 2) no significant increase in resting alveolar ventilation, or alveolar Po2, at ALT16 compared with ALT1, and consequently had 3) an increased arterial Pco2 and decreased arterial Po2 and arterial O2 saturation at rest at ALT16. Furthermore, PFO+ subjects had an increased incidence of acute mountain sickness (AMS) at ALT1 concomitant with significantly lower peripheral O2 saturation (SpO2). These data suggest that PFO+ subjects have increased susceptibility to AMS when not taking prophylactic treatments, that right-to-left shunt through a PFO impairs pulmonary gas exchange efficiency even after acclimatization to high altitude, and that PFO+ subjects have blunted ventilatory acclimatization after 16 days at altitude compared with PFO- subjects.
Resumo:
AIMS: To evaluate the very long-term risk of recurrent thromboembolic events in patients treated by percutaneous PFO closure. METHODS AND RESULTS: Between 1998 and 2008, a total of 232 consecutive patients with PFO and a high suspicion of paradoxical embolism were treated by percutaneous closure. The following major events were observed during hospitalisation: implantation failure (one patient) and appearance of an acute left-sided device thrombus requiring surgery (one patient). The primary endpoint of the study was a recurrent embolic event beyond at least five years' follow-up. During a mean follow-up of 7.6±2.4 years, this event occurred in five patients, representing a 0.28% annual/patient risk. Other major complications during follow-up were the following: late thrombus formation on the device (two patients) and transient atrial fibrillation (15 patients). Three patients died during follow-up from cardiovascular causes considered not related to the index procedure. The PFO was judged closed on follow-up echocardiography in 92.3% of patients. CONCLUSIONS: Long-term follow-up following percutaneous PFO closure for presumed paradoxical embolism reveals very low recurrence rates. This observation should be put in perspective with recent published randomised trials comparing percutaneous closure and medical therapy.
Resumo:
OBJECTIVE: We examined the influence of clinical, radiologic, and echocardiographic characteristics on antithrombotic choice in patients with cryptogenic stroke (CS) and patent foramen ovale (PFO), hypothesizing that features suggestive of paradoxical embolism might lead to greater use of anticoagulation. METHODS: The Risk of Paradoxical Embolism Study combined 12 databases to create the largest dataset of patients with CS and known PFO status. We used generalized linear mixed models with a random effect of component study to explore whether anticoagulation was preferentially selected based on the following: (1) younger age and absence of vascular risk factors, (2) "high-risk" echocardiographic features, and (3) neuroradiologic findings. RESULTS: A total of 1,132 patients with CS and PFO treated with anticoagulation or antiplatelets were included. Overall, 438 participants (39%) were treated with anticoagulation with a range (by database) of 22% to 54%. Treatment choice was not influenced by age or vascular risk factors. However, neuroradiologic findings (superficial or multiple infarcts) and high-risk echocardiographic features (large shunts, shunt at rest, and septal hypermobility) were predictors of anticoagulation use. CONCLUSION: Both antithrombotic regimens are widely used for secondary stroke prevention in patients with CS and PFO. Radiologic and echocardiographic features were strongly associated with treatment choice, whereas conventional vascular risk factors were not. Prior observational studies are likely to be biased by confounding by indication.
Resumo:
Introduction: Renal transplantation is considered the treatment of choice for end-stage renal disease. However, the association of occlusive aorto-iliac disease and chronic renal failure is frequent and aorto-iliac reconstruction may be necessary prior to renal transplantation. This retrospective study reviews the results of this operative strategy.Material and Methods: Between January 2001 and June 2010, 309 patients underwent renal transplantation at our institution and 8 patients had prior aorto-iliac reconstruction using prosthetic material. There were 6 men and 2 women with a median age of 62 years (range 51-70). Five aorto-bifemoral and 2 aorto-bi-iliac bypasses were performed for stage II (n=5), stage IV (n=1) and aortic aneurysm (n=1). In one patient, iliac kissing stents and an ilio-femoral bypass were implanted. 4 cadaveric and 4 living donor renal transplantations were performed with an interval of 2 months to 10 years after revascularization.The results were analysed with respect of graft and patients survival. Differences between groups were tested by the log rank method.Results: No complications and no death occurred in the post-operative period. All bypasses remained patent during follow-up. The median time of post transplantation follow-up was 46 months for all patients and 27 months for patients with prior revascularization. In the revascularized group and control group, the graft and patient survival at 1 year were respectively 100%/96%, 100%/99% and at 5 years 86%/86%, 86%/94%, without significant differences between both groups.Discussion: Our results suggest that renal transplantation following prior aorto-iliac revascularisation with prosthetic material is safe and effective. Patients with end-stage renal disease and concomitant aorto-iliac disease should therefore be considered for renal transplantation. However, caution in the interpretation of the results is indicated due to the small sample size of our study.
Resumo:
BACKGROUND/OBJECTIVES: This study aims to assess whether patent foramen ovale (PFO) closure is superior to medical therapy in preventing recurrence of cryptogenic ischemic stroke or transient ischemic attack (TIA). METHODS: We searched PubMed for randomized trials which compared PFO closure with medical therapy in cryptogenic stroke/TIA using the items: "stroke or cerebrovascular accident or TIA" and "patent foramen ovale or paradoxical embolism" and "trial or study". RESULTS: Among 650 potentially eligible articles, 3 were included including 2303 patients. There was no statistically significant difference between PFO-closure and medical therapy in ischemic stroke recurrence (1.91% vs. 2.94% respectively, OR: 0.64, 95%CI: 0.37-1.10), TIA (2.08% vs. 2.42% respectively, OR: 0.87, 95%CI: 0.50-1.51) and death (0.60% vs. 0.86% respectively, OR: 0.71, 95%CI: 0.28-1.82). In subgroup analysis, there was significant reduction of ischemic strokes in the AMPLATZER PFO Occluder arm vs. medical therapy (1.4% vs. 3.04% respectively, OR: 0.46, 95%CI: 0.21-0.98, relative-risk-reduction: 53.2%, absolute-risk-reduction: 1.6%, number-needed-to-treat: 61.8) but not in the STARFlex device (2.7% vs. 2.8% with medical therapy, OR: 0.93, 95%CI: 0.45-2.11). Compared to medical therapy, the number of patients with new-onset atrial fibrillation (AF) was similar in the AMPLATZER PFO Occluder arm (0.72% vs. 1.28% respectively, OR: 1.81, 95%CI: 0.60-5.42) but higher in the STARFlex device (0.64% vs. 5.14% respectively, OR: 8.30, 95%CI: 2.47-27.84). CONCLUSIONS: This meta-analysis does not support PFO closure for secondary prevention with unselected devices in cryptogenic stroke/TIA. In subgroup analysis, selected closure devices may be superior to medical therapy without increasing the risk of new-onset AF, however. This observation should be confirmed in further trials using inclusion criteria for patients with high likelihood of PFO-related stroke recurrence.