23 resultados para multi-platform development
Resumo:
The objective of this work was to develop an easily applicable technique and a standardized protocol for high-quality post-mortem angiography. This protocol should (1) increase the radiological interpretation by decreasing artifacts due to the perfusion and by reaching a complete filling of the vascular system and (2) ease and standardize the execution of the examination. To this aim, 45 human corpses were investigated by post-mortem computed tomography (CT) angiography using different perfusion protocols, a modified heart-lung machine and a new contrast agent mixture, specifically developed for post-mortem investigations. The quality of the CT angiographies was evaluated radiologically by observing the filling of the vascular system and assessing the interpretability of the resulting images and by comparing radiological diagnoses to conventional autopsy conclusions. Post-mortem angiography yielded satisfactory results provided that the volumes of the injected contrast agent mixture were high enough to completely fill the vascular system. In order to avoid artifacts due to the post-mortem perfusion, a minimum of three angiographic phases and one native scan had to be performed. These findings were taken into account to develop a protocol for quality post-mortem CT angiography that minimizes the risk of radiological misinterpretation. The proposed protocol is easy applicable in a standardized way and yields high-quality radiologically interpretable visualization of the vascular system in post-mortem investigations.
Resumo:
The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.
Resumo:
Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for biodegradation, would assist in assessing potential ecological damage and following the progress of cleanup operations. Here we examined the suitability of a set of different rapid bioassays (2-3 h) using bacteria expressing the LuxAB luciferase to measure the presence of short-chain linear alkanes, monoaromatic and polyaromatic compounds, biphenyls, and DNA-damaging agents in seawater after a laboratory-scale oil spill. Five independent spills of 20 mL of NSO-1 crude oil with 2 L of seawater (North Sea or Mediterranean Sea) were carried out in 5 L glass flasks for periods of up to 10 days. Bioassays readily detected ephemeral concentrations of short-chain alkanes and BTEX (i.e., benzene, toluene, ethylbenzene, and xylenes) in the seawater within minutes to hours after the spill, increasing to a maximum of up to 80 muM within 6-24 h, after which they decreased to low or undetectable levels. The strong decrease in short-chain alkanes and BTEX may have been due to their volatilization or biodegradation, which was supported by changes in the microbial community composition. Two- and three-ring PAHs appeared in the seawater phase after 24 h with a concentration up to 1 muM naphthalene equivalents and remained above 0.5 muM for the duration of the experiment. DNA-damage-sensitive bioreporters did not produce any signal with the oil-spilled aqueous-phase samples, whereas bioassays for (hydroxy)biphenyls showed occasional responses. Chemical analysis for alkanes and PAHs in contaminated seawater samples supported the bioassay data, but did not show the typical ephemeral peaks observed with the bioassays. We conclude that bacterium-based bioassays can be a suitable alternative for rapid on-site quantitative measurement of hydrocarbons in seawater.
Resumo:
Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.
Resumo:
This paper presents the current state and development of a prototype web-GIS (Geographic Information System) decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and technologies, particularly the Boundless (formerly OpenGeo) framework and its client side software development kit (SDK). The main purpose of the platform is to assist the experts and stakeholders in the decision-making process for evaluation and selection of different risk management strategies through an interactive participation approach, integrating web-GIS interface with decision support tool based on a compromise programming approach. The access rights and functionality of the platform are varied depending on the roles and responsibilities of stakeholders in managing the risk. The application of the prototype platform is demonstrated based on an example case study site: Malborghetto Valbruna municipality of North-Eastern Italy where flash floods and landslides are frequent with major events having occurred in 2003. The preliminary feedback collected from the stakeholders in the region is discussed to understand the perspectives of stakeholders on the proposed prototype platform.
Resumo:
Abstract Long term contact with pathogens induces an adaptive immune response, which is mainly mediated by T and B cells. Antigen-induced activation of T and B cells is an important event, since it facilitates the transition of harmless, low proliferative lymphocytes into powerful and fast expanding cells, which can, if deregulated, be extremely harmful and dangerous for the human body. One of the most important events during lymphocyte activation is the induction of NF-xB activity, a transcription factor that controls not only cytokine secretion, but also lymphocyte proliferation and survival. Recent discoveries identified the CBM complex as the central regulator of NF-xB activity in lymphocytes. The CBM complex consists of the three proteins Carma1, Bcl10 and Malt1, in which Carma1 serves as recruitment platform of the complex and Bcl10 as an adaptor to recruit Malt1 to this platform. But exactly how Malt1 activates NF-x6 is still poorly understood. We discovered that Malt1 is a protease, which cleaves its interaction partner Bcl10 upon T and B cell stimulation. We mapped the Bcl10 cleavage site by single point mutations as well as by a proteomics approach, and used this knowledge to design a fluorogenic Malt1 reporter peptide. With this tool were we able to the first time demonstrate proteolytic activity of Malt1 in vitro, using recombinant Malt1, and in stimulated T cells. Based on similarities to a metacaspase, we designed a Malt1inhibitor, which allowed unto investigate the role of Malt1 activity in T cells. Malt1-inhibited T cells showed a clear defect in NF-xB activity, resulting in impaired IL-2 cytokine secretion levels. We also found a new unexpected role for Bcl10; the blockade of Bcl10 cleavage resulted in a strongly impaired capability of stimulated T cells to adhere to the extracellular matrix protein fibronectin. Because of the central position of the C8M complex, it is not surprising that different lymphomas show abnormal expressions of Carma1, Bcl10 and Malt1. We investigated the role of Malt1 proteolytic activity in the most aggressive subtype of diffuse large B cell lymphomas called ABC, which was described to depend on the expression of Carmal, and frequently carries oncogenic Carmal mutations. We found constitutive high Malt1 activity in all tested ABC cell lines visualized by detection of cleavage products of Malt1 substrates. With the use of the Malt1-inhibitor, we could demonstrate that Malt-inhibition in those cells had two effects. First, the tumor cell proliferation was decreased, most likely because of lower autocrine stimulation by cytokines. Second, we could sensitize the ABC cells towards cell death, which is most likely caused by reduced expression of prosurvival NF-xB target gens. Taken together, we identified Malt1 as a protease in T and B cells, demonstrated its importance for NF-xB signaling and its deregulation in a subtype of diffuse large B cell lymphoma. This could allow the development of a new generation of immunomodulatory and anti-cancer drugs. Résumé Un contact prolongé avec des pathogènes provoque une réponse immunitaire adaptative qui dépend principalement des cellules T et 8. L'activation des lymphocytes T et B, suite à la reconnaissance d'un antigène, est un événement important puisqu'il facilite la transition pour ces cellules d'un état de prolifération limitée et inoffensive à une prolifération soutenue et rapide. Lorsque ce mécanisme est déréglé ìl peut devenir extrêmement nuisible et dangereux pour le corps humain. Un des événement les plus importants lors de l'activation des lymphocytes est l'induction du facteur de transcription NFxB, qui organise la sécrétion de cytokines ainsi que la prolifération et la survie des lymphocytes. Le complexe CBM, composé des trois protéines Carmai, Bc110 et Malt1, a été récemment identifié comme un régulateur central de l'activité de NF-x8 dans les lymphocytes. Carma1 sert de plateforme de recrutement pour ce complexe alors que Bc110 permet d'amener Malt1 dans cette plateforme. Cependant, le rôle exact de Malt1 dans l'activation de NF-tcB reste encore mal compris. Nous avons découvert que Malt1 est une protéase qui clive son partenaire d'interaction BcI10 après stimulation des cellules T et B. Nous avons identifié le site de clivage de BcI10 par une série de mutations ponctuelles ainsi que par une approche protéomique, ce qui nous a permis de fabriquer un peptide reporteur fluorogénique pour mesurer l'activité de Malt1. Grâce à cet outil, nous avons démontré pour la première fois l'activité protéolytique de Malt1 in vitro à l'aide de protéines Malt1 recombinantes ainsi que dans des cellules T stimulées. La ressemblance de Malt1 avec une métacaspase nous a permis de synthétiser un inhibiteur de Malt1 et d'étudier ainsi le rôle de l'activité de Malt1 dans les cellules T. L'inhibition de Malt1 dans les cellules T a révélé un net défaut de l'activité de NF-x8, ayant pour effet une sécrétion réduite de la cytokine IL-2. Nous avons également découvert un rôle inattendu pour Bcl10: en effet, bloquer le clivage de Bcl10 diminue fortement la capacité d'adhésion des cellules T stimulées à la protéine fïbronectine, un composant de la matrice extracellulaire. En raison de la position centrale du complexe CBM, il n'est pas étonnant que le niveau d'expression de Carmai, Bcl10 et Malt1 soit anormal dans plusieurs types de lymphomes. Nous avons examiné le rôle de l'activité protéolytique de Malt1 dans le sous-type le plus agressif des lymphomes B diffus à grandes cellules, appelé sous-type ABC. Ce sous-type de lymphomes dépend de l'expression de Carmai et présente souvent des mutations oncogéniques de Carma1. Nous avons démontré que l'activité de Malt1 était constitutivement élevée dans toutes les lignées cellulaires de type ABC testées, en mettant en évidence la présence de produits de clivage de différents substrats de Malt1. Enfin, l'utilisation de l'inhibiteur de Malt1 nous a permis de démontrer que l'inhibition de Malt1 avait deux effets. Premièrement, une diminution de la prolifération des cellules tumorales, probablement dûe à leur stimulation autocrine par des cytokines fortement réduite. Deuxièmement, une sensibilisation des cellules de type ABC à ia mort cellulaire, vraisemblablement causée par l'expression diminuée de gènes de survie dépendants de NF-tcB. En résumé, nous avons identifié Malt1 comme une protéase dans les cellules T et B, nous avons mis en évidence son importance pour l'activation de NF-xB ainsi que les conséquences du dérèglement de l'activité de Malt1 dans un sous-type de lymphome B diffus à larges cellules. Notre étude ouvre ainsi la voie au développement d'une nouvelle génération de médicaments immunomodulateurs et anti-cancéreux.
Resumo:
Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.
Resumo:
Young hooded rats were trained to escape onto a hidden platform after swimming in a pool of opaque water. Subjects 21, 28, 35, 42, and 64 days of age on the first training day were given 28 trials on 5 consecutive days. Half of the rats were required to localize the platform in relation to external room cues only ("place only" condition) and the other half were helped by the presence of a visible cue on the platform ("cue + place" condition). A deficiency in place navigation was observed in the 21- and 28-day groups; they showed slow escape and took circuitous routes more often than older rats. This deficiency was related to a poor spatial bias toward the training position when the subjects were allowed to swim for 30 s in the absence of the platform, at the end of the 28-trial training period (probe trial). The 35-day group showed adult-like learning ability in both training conditions, but failed to show searching behavior during the probe trial after having been trained in the presence of the proximal cue. Only rats older than 40 days showed typical adult behavior such as swimming directly toward the platform from any starting position and localized searching around the absent platform's position during the probe trial, no matter what the training conditions were. These results suggest that central nervous system structures responsible for place learning in the rat are functional from around 32 days of age, but fail to trigger searching behavior following cued training before the sixth week.
Resumo:
NanoImpactNet (NIN) is a multidisciplinary European Commission funded network on the environmental, health and safety (EHS) impact of nanomaterials. The 24 founding scientific institutes are leading European research groups active in the fields of nanosafety, nanorisk assessment and nanotoxicology. This 4-year project is the new focal point for information exchange within the research community. Contact with other stakeholders is vital and their needs are being surveyed. NIN is communicating with 100s of stakeholders: businesses; internet platforms; industry associations; regulators; policy makers; national ministries; international agencies; standard-setting bodies and NGOs concerned by labour rights, EHS or animal welfare. To improve this communication, internet research, a questionnaire distributed via partners and targeted phone calls were used to identify stakeholders' interests and needs. Knowledge gaps and the necessity for further data mentioned by representatives of all stakeholder groups in the targeted phone calls concerned: • the potential toxic and safety hazards of nanomaterials throughout their lifecycles; • the fate and persistence of nanoparticles in humans, animals and the environment; • the associated risks of nanoparticle exposure; • greater participation in: the preparation of nomenclature, standards, methodologies, protocols and benchmarks; • the development of best practice guidelines; • voluntary schemes on responsibility; • databases of materials, research topics and themes, but also of expertise. These findings suggested that stakeholders and NIN researchers share very similar knowledge needs, and that open communication and free movement of knowledge will benefit both researchers and industry. Subsequently a workshop was organised by NIN focused on building a sustainable multi-stakeholder dialogue. Specific questions were asked to different stakeholder groups to encourage discussions and open communication. 1. What information do stakeholders need from researchers and why? The discussions about this question confirmed the needs identified in the targeted phone calls. 2. How to communicate information? While it was agreed that reporting should be enhanced, commercial confidentiality and economic competition were identified as major obstacles. It was recognised that expertise was needed in the areas of commercial law and economics for a wellinformed treatment of this communication issue. 3. Can engineered nanomaterials be used safely? The idea that nanomaterials are probably safe because some of them have been produced 'for a long time', was questioned, since many materials in common use have been proved to be unsafe. The question of safety is also about whether the public has confidence. New legislation like REACH could help with this issue. Hazards do not materialise if exposure can be avoided or at least significantly reduced. Thus, there is a need for information on what can be regarded as acceptable levels of exposure. Finally, it was noted that there is no such thing as a perfectly safe material but only boundaries. At this moment we do not know where these boundaries lie. The matter of labelling of products containing nanomaterials was raised, as in the public mind safety and labelling are connected. This may need to be addressed since the issue of nanomaterials in food, drink and food packaging may be the first safety issue to attract public and media attention, and this may have an impact on 'nanotechnology as a whole. 4. Do we need more or other regulation? Any decision making process should accommodate the changing level of uncertainty. To address the uncertainties, adaptations of frameworks such as REACH may be indicated for nanomaterials. Regulation is often needed even if voluntary measures are welcome because it mitigates the effects of competition between industries. Data cannot be collected on voluntary bases for example. NIN will continue with an active stakeholder dialogue to further build on interdisciplinary relationships towards a healthy future with nanotechnology.
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.
Resumo:
Adjuvants are increasingly used by the vaccine research and development community, particularly for their ability to enhance immune responses and for their dose-sparing properties. However, they are not readily available to the majority of public sector vaccine research groups, and even those with access to suitable adjuvants may still fail in the development of their vaccines because of lack of knowledge on how to correctly formulate the adjuvants. This shortcoming led the World Health Organization to advocate for the establishment of the Vaccine Formulation Laboratory at the University of Lausanne, Switzerland. The primary mission of the laboratory is to transfer adjuvants and formulation technology free of intellectual property rights to academic institutions, small biotechnology companies and developing countries vaccine manufacturers. In this context, the transfer of an oil-in-water emulsion to Bio Farma, an Indonesian vaccine manufacturer, was initiated to increase domestic pandemic influenza vaccine production capacity as part of the national pandemic influenza preparedness plan.
Resumo:
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.