138 resultados para low risk population
Resumo:
BACKGROUND: There is little information regarding the determinants and trends of the prevalence of low cardiovascular risk factor (RF) profile in the general population. The aim of this study was to assess the prevalence and trends of low RF profile in the Swiss population according to different definitions. METHODS: Population-based cross-sectional studies conducted in 1984-1986 (N=3300), 1988-1989 (N=3331), 1992-1993 (N=3133) and 2003-2006 (N=6170) and restricted to age group 35-75 years. Seven different definitions of low RF profile were used to assess determinants, while two definitions were used to assess trends. RESULTS: Prevalence of low RF profile varied between 6.5% (95% confidence interval: 5.9-7.1) and 9.7% (9.0-10.5) depending on the definition used. This prevalence was higher than in other countries. Irrespective of the definition used, the prevalence of low RF profile was higher in women and in physically active participants, and decreased with increasing age or in the presence of a family history of cardiovascular disease. Using one definition, the prevalence of low RF profile increased from 3.8% (3.1-4.5) in 1984-1986 to 6.7% (6.1-7.3) in 2003-2006; using another definition, the results were 5.9% (5.1-6.8) and 9.7% (9.0-10.5), respectively. CONCLUSION: Switzerland is characterized by a high and increasing prevalence of low RF profile within the age group 35 to 75, irrespective of the criteria used. This high prevalence might partly explain the low and decreasing trend in cardiovascular mortality rates.
Resumo:
Purpose: to assess the prevalence and trends of low cardiovascular risk factor (RF) profile in the Swiss population according to different definitions. Methods: Population-based cross-sectional study of 6170 subjects (3241 women) aged 35-75 years living in Lausanne, Switzerland. Trends were assessed using data from the Swiss MONICA population surveys conducted in 1984-6 (N = 3300), 1988-9 (N = 3331) and 1992-3 (N = 3133) and restricted to the same age group. Seven different definitions of low RF profile were used. Results: prevalence of low RF profile varied between 6.5% (95% confidence interval: 5.9-7.1) and 9.7% (9.0-10.5) depending on the definition used (see fig. 1). The prevalence was inversely related to the number of criteria used and higher than in other countries. Irrespective of the definition used, the prevalence of low RF profile was higher in women and in physically active participants, and decreased with increasing age or in the presence of a family history of cardiovascular disease. The prevalence of low RF profile increased from 3.8% (3.1- 4.5) in 1984-6 to 6.7% (6.1-7.3) in 2003-6; using another definition, the results were 5.9% (5.1-6.8) and 9.7% (9.0-10.5), respectively (see fig. 2). Conclusion: the prevalence of low RF profile varies according to the criteria used; this prevalence is relatively high and increasing in the Swiss population, which might partly explain the low and decreasing trend in cardiovascular mortality rates.
Resumo:
Background: There is little information regarding the determinants and trends of the prevalence of low cardiovascular risk factor (RF) profile in the general population. The aim of this study was to assess the prevalence and trends of low RF profile in the Swiss population according to different definitions. Methods: Population-based cross-sectional studies conducted in 1984-6 (N=3300), 1988-9 (N=3331), 1992-3 (N=3133) and 2003-6 (N=6170) and restricted to age group 35-75 years. Seven different definitions of low RF profile were used to assess determinants, while two definitions were used to assess trends. Results: Prevalence of low RF profile varied between 6.5% (95% confidence interval: 5.9-7.1) and 9.7% (9.0-10.5) depending on the definition used. This prevalence was higher than in other countries. Irrespective of the definition used, the prevalence of low RF profile was higher in women and in physically active participants, and decreased with increasing age or in the presence of a family history of cardiovascular disease. Using one definition, the prevalence of low RF profile increased from 3.8% (3.1-4.5) in 1984-6 to 6.7% (6.1-7.3) in 2003-6; using another definition, the results were 5.9% (5.1-6.8) and 9.7% (9.0-10.5), respectively. Conclusion: Switzerland is characterized by a high and increasing prevalence of low RF profile within the age group 35 to 75, irrespective of the criteria used. This high prevalence might partly e
Resumo:
Purpose: To assess the prevalence and trends of low cardiovascular risk factor (RF) profile in the Swiss population according to different definitions. Methods: Population-based cross-sectional study of 6170 subjects (3241 women) aged 35-75 years living in Lausanne, Switzerland. Trends were assessed using data from the Swiss MONICA population surveys conducted in 1984-6 (N=3300), 1988-9 (N=3331) and 1992-3 (N=3133) and restricted to the same age group. Seven different definitions of low RF profile were used. Results: Prevalence of low RF profile varied between 6.5% (95% confidence interval: 5.9-7.1) and 9.7% (9.0-10.5) depending on the definition used. The prevalence was inversely related to the number of criteria used and higher than in other countries. Irrespective of the definition used, the prevalence of low RF profile was higher in women and in physically active participants, and decreased with increasing age or in the presence of a family history of cardiovascular disease (table). The prevalence of low RF profile increased from 3.8% (3.1-4.5) in 1984-6 to 6.7% (6.1-7.3) in 2003-6; using another definition, the results were 5.9% (5.1-6.8) and 9.7% (9.0-10.5), respectively. Conclusion: The prevalence of low RF profile varies according to the criteria used; this prevalence is relatively high and increasing in the Swiss population, which might partly explain the low and decreasing trend in cardiovascular mortality rates.
Resumo:
BACKGROUND: A simple prognostic model could help identify patients with pulmonary embolism who are at low risk of death and are candidates for outpatient treatment. METHODS: We randomly allocated 15,531 retrospectively identified inpatients who had a discharge diagnosis of pulmonary embolism from 186 Pennsylvania hospitals to derivation (67%) and internal validation (33%) samples. We derived our rule to predict 30-day mortality using classification tree analysis and patient data routinely available at initial examination as potential predictor variables. We used data from a European prospective study to externally validate the rule among 221 inpatients with pulmonary embolism. We determined mortality and nonfatal adverse medical outcomes across derivation and validation samples. RESULTS: Our final model consisted of 10 patient factors (age > or = 70 years; history of cancer, heart failure, chronic lung disease, chronic renal disease, and cerebrovascular disease; and clinical variables of pulse rate > or = 110 beats/min, systolic blood pressure < 100 mm Hg, altered mental status, and arterial oxygen saturation < 90%). Patients with none of these factors were defined as low risk. The 30-day mortality rates for low-risk patients were 0.6%, 1.5%, and 0% in the derivation, internal validation, and external validation samples, respectively. The rates of nonfatal adverse medical outcomes were less than 1% among low-risk patients across all study samples. CONCLUSIONS: This simple prediction rule accurately identifies patients with pulmonary embolism who are at low risk of short-term mortality and other adverse medical outcomes. Prospective validation of this rule is important before its implementation as a decision aid for outpatient treatment.
Resumo:
BACKGROUND: Physicians need a specific risk-stratification tool to facilitate safe and cost-effective approaches to the management of patients with cancer and acute pulmonary embolism (PE). The objective of this study was to develop a simple risk score for predicting 30-day mortality in patients with PE and cancer by using measures readily obtained at the time of PE diagnosis. METHODS: Investigators randomly allocated 1,556 consecutive patients with cancer and acute PE from the international multicenter Registro Informatizado de la Enfermedad TromboEmbólica to derivation (67%) and internal validation (33%) samples. The external validation cohort for this study consisted of 261 patients with cancer and acute PE. Investigators compared 30-day all-cause mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. RESULTS: In the derivation sample, multivariable analyses produced the risk score, which contained six variables: age > 80 years, heart rate ≥ 110/min, systolic BP < 100 mm Hg, body weight < 60 kg, recent immobility, and presence of metastases. In the internal validation cohort (n = 508), the 22.2% of patients (113 of 508) classified as low risk by the prognostic model had a 30-day mortality of 4.4% (95% CI, 0.6%-8.2%) compared with 29.9% (95% CI, 25.4%-34.4%) in the high-risk group. In the external validation cohort, the 18% of patients (47 of 261) classified as low risk by the prognostic model had a 30-day mortality of 0%, compared with 19.6% (95% CI, 14.3%-25.0%) in the high-risk group. CONCLUSIONS: The developed clinical prediction rule accurately identifies low-risk patients with cancer and acute PE.
Resumo:
Introduction: In a prior study, we demonstrated that ACVBP + consolidation was superior to 3 cycles of CHOP + radiotherapy in young patients (pts) with localized aggressive lymphoma (Reyes F et al. N Engl J Med 2005;352:1197). This randomized trial compared in these pts ACVBP vs. ACVBP + a short course of rituximab (R-ACVBP).Methods: untreated pts between 18 and 65y with stage I/II DLBCL and no adverse prognostic factors according to the aa-IPI were eligible. ACVBP consisted of 3 induction cycles given every 2 weeks: doxorubicin (75 mg/m2) day 1, cyclophosphamide (1.2g/m2) day 1, vindesine (2 mg/m2) day 1 and 5, bleomycin (10 mg) day 1 and 5, prednisone (60 mg/m2) day 1 to 5 followed by consolidation with metothrexate, ifosfamide, VP-16 and cytarabine. R-ACVBP consisted of the same regimen combined with 4 doses of rituximab (375 mg/m2) on day 1, 15, 29 and 43. Primary objective was EFS.Results: From 01/04 to 03/08, 223 pts were randomized, 113 in ACVBP and 110 in R-ACVBP arm. Characteristics were: median age 49y (18-65), stage I 63%, extranodal involvement 45%, bulky disease 4%. CR was 94% in ACVBP and 97% in ACVBP arm (ns). With a median follow-up of 43 months, the 3-y EFS was 82% (95% CI, 73% to 88%) in ACVBP and 93% (95% CI, 87% to 97%) in R-ACVBP group (P=0.0487). The 3-y PFS was 83% (95% CI, 74% to 89%) and 95% (95% CI, 89% to 98%) respectively (P=0.0205). OS did not significantly differ with a 3-y estimates of 97% (95% CI, 90% to 99%) for ACVBP and 98% (95% CI, 92% to 100%) for R-ACVBP (P=0.686). In multivariate analysis, a longer PFS was associated with R-ACVBP arm (P=0.0302) and lower b2-m level (P=0.0164). The same proportion of pts (27%) experienced at least 1 SAE in both groups. There were 4 deaths in each arm, with 1 treatment-related death in R-ACVBP (pneumocystis jiroveci pneumonia).Conclusion: the addition of only 4 doses of rituximab to ACVBP significantly improves EFS and PFS in younger pts with low-risk localized DLBCL.
Resumo:
PURPOSE This double-blind, multicenter trial compared the efficacy and safety of a single daily oral dose of moxifloxacin with oral combination therapy in low-risk febrile neutropenic patients with cancer. PATIENTS AND METHODS Inclusion criteria were cancer, febrile neutropenia, low risk of complications as predicted by a Multinational Association for Supportive Care in Cancer (MASCC) score > 20, ability to swallow, and ≤ one single intravenous dose of empiric antibiotic therapy before study drug treatment initiation. Early discharge was encouraged when a set of predefined criteria was met. Patients received either moxifloxacin (400 mg once daily) monotherapy or oral ciprofloxacin (750 mg twice daily) plus amoxicillin/clavulanic acid (1,000 mg twice daily). The trial was designed to show equivalence of the two drug regimens in terms of therapy success, defined as defervescence and improvement in clinical status during study drug treatment (< 10% difference). Results Among the 333 patients evaluated in an intention-to-treat analysis, therapy success was observed in 80% of the patients administered moxifloxacin and in 82% of the patients administered combination therapy (95% CI for the difference, -10% to 8%, consistent with equivalence). Minor differences in tolerability, safety, and reasons for failure were observed. More than 50% of the patients in the two arms were discharged on protocol therapy, with 5% readmissions among those in either arm. Survival was similar (99%) in both arms. CONCLUSION Monotherapy with once daily oral moxifloxacin is efficacious and safe in low-risk febrile neutropenic patients identified with the help of the MASCC scoring system, discharged early, and observed as outpatients.
Resumo:
Summary Background: We previously derived a clinical prognostic algorithm to identify patients with pulmonary embolism (PE) who are at low-risk of short-term mortality who could be safely discharged early or treated entirely in an outpatient setting. Objectives: To externally validate the clinical prognostic algorithm in an independent patient sample. Methods: We validated the algorithm in 983 consecutive patients prospectively diagnosed with PE at an emergency department of a university hospital. Patients with none of the algorithm's 10 prognostic variables (age >/= 70 years, cancer, heart failure, chronic lung disease, chronic renal disease, cerebrovascular disease, pulse >/= 110/min., systolic blood pressure < 100 mm Hg, oxygen saturation < 90%, and altered mental status) at baseline were defined as low-risk. We compared 30-day overall mortality among low-risk patients based on the algorithm between the validation and the original derivation sample. We also assessed the rate of PE-related and bleeding-related mortality among low-risk patients. Results: Overall, the algorithm classified 16.3% of patients with PE as low-risk. Mortality at 30 days was 1.9% among low-risk patients and did not differ between the validation and the original derivation sample. Among low-risk patients, only 0.6% died from definite or possible PE, and 0% died from bleeding. Conclusions: This study validates an easy-to-use, clinical prognostic algorithm for PE that accurately identifies patients with PE who are at low-risk of short-term mortality. Low-risk patients based on our algorithm are potential candidates for less costly outpatient treatment.
Resumo:
OBJECTIVE: To determine the sensitivity of ultrasonography in screening for foetal malformations in the pregnant women of the Swiss Canton of Vaud. STUDY DESIGN: Retrospective study over a period of five years. METHOD: We focused our study on 512 major or minor clinically relevant malformations detectable by ultrasonography. We analysed the global sensitivity of the screening and compared the performance of the tertiary centre with that of practitioners working in private practice or regional hospitals. RESULTS: Among the 512 malformations, 181 (35%) involved the renal and urinary tract system, 137 (27%) the heart, 71 (14%) the central nervous system, 50 (10%) the digestive system, 42 (8%) the face and 31 (6%) the limbs. Global sensitivity was 54.5%. The lowest detection rate was observed for cardiac anomalies, with only 23% correct diagnoses. The tertiary centre achieved a 75% detection rate in its outpatient clinic and 83% in referred patients. Outside the referral centre, the diagnostic rate attained 47%. CONCLUSIONS: Routine foetal examination by ultrasonography in a low-risk population can detect foetal structural abnormalities. Apart from the diagnosis of cardiac abnormalities, the results in the Canton of Vaud are satisfactory and justify routine screening for malformations in a low-risk population. A prerequisite is continuing improvement in the skills of ultrasonographers through medical education.
Resumo:
BACKGROUND: No prior studies have identified which patients with deep vein thrombosis in the lower limbs are at a low risk for adverse events within the first week of therapy. METHODS: We used data from the Registro Informatizado de la Enfermedad TromboEmbólica (RIETE) to identify patients at low risk for the composite outcome of pulmonary embolism, major bleeding, or death within the first week. We built a prognostic score and compared it with the decision to treat patients at home. RESULTS: As of December 2013, 15,280 outpatients with deep vein thrombosis had been enrolled. Overall, 5164 patients (34%) were treated at home. Of these, 12 (0.23%) had pulmonary embolism, 8 (0.15%) bled, and 4 (0.08%) died. On multivariable analysis, chronic heart failure, recent immobility, recent bleeding, cancer, renal insufficiency, and abnormal platelet count independently predicted the risk for the composite outcome. Among 11,430 patients (75%) considered to be at low risk, 15 (0.13%) suffered pulmonary embolism, 22 (0.19%) bled, and 8 (0.07%) died. The C-statistic was 0.61 (95% confidence interval [CI], 0.57-0.65) for the decision to treat patients at home and 0.76 (95% CI, 0.72-0.79) for the score (P = .003). Net reclassification improvement was 41% (P < .001). Integrated discrimination improvement was 0.034 for the score and 0.015 for the clinical decision (P < .001). CONCLUSIONS: Using 6 easily available variables, we identified outpatients with deep vein thrombosis at low risk for adverse events within the first week. These data may help to safely treat more patients at home. This score, however, should be validated.
Resumo:
Background The superiority of a chemotherapy with doxorubicin, cyclophosphamide, vindesine, bleomycin and prednisone (ACVBP) in comparison with cyclophosphamide, doxorubicin, vincristin and prednisone plus radiotherapy for young patients with localized diffuse large B-cell lymphoma (DLBCL) was previously demonstrated. We report the results of a trial which evaluates the role of rituximab combined with ACVBP (R-ACVBP) in these patients. Patients and methods Untreated patients younger than 66 years with stage I or II DLBCL and no adverse prognostic factors of the age-adjusted International Prognostic Index were randomly assigned to receive three cycles of ACVBP plus sequential consolidation with or without the addition of four infusions of rituximab. Results A total of 223 patients were randomly allocated to the study, 110 in the R-ACVBP group and 113 in the ACVBP group. After a median follow-up of 43 months, our 3-year estimate of event-free survival was 93% in the R-ACVBP group and 82% in the ACVBP group (P = 0.0487). Three-year estimate of progression-free survival was increased in the R-ACVBP group (95% versus 83%, P = 0.0205). Overall survival did not differ between the two groups with a 3-year estimates of 98% and 97%, respectively (P = 0.686). Conclusion In young patients with low-risk localized DLBCL, rituximab combined with three cycles of ACVBP plus consolidation is significantly superior to ACVBP plus consolidation alone.
Resumo:
Summary Background: The combination of the Pulmonary Embolism Severity Index (PESI) and troponin testing could help physicians identify appropriate patients with acute pulmonary embolism (PE) for early hospital discharge. Methods: This prospective cohort study included a total of 567 patients from a single center registry with objectively confirmed acute symptomatic PE. On the basis of the PESI, each patient was classified into 1 of 5 classes (I to V). At the time of hospital admission, patients had troponin I (cTnI) levels measured. The endpoint of the study was all-cause mortality within 30 days after diagnosis. We calculated the mortality rates in 4 patient groups: group 1: PESI class I-II plus cTnI <0.1 ng mL(-1); group 2: PESI classes III-V plus cTnI <0.1 ng mL(-1); group 3: PESI classes I-II plus cTnI >/= 0.1 ng mL(-1); and group 4: PESI classes III-V plus cTnI >/= 0.1 ng mL(-1). Results: The study cohort had a 30-day mortality of 10% (95% confidence interval [CI], 7.6 to 12.5%). Mortality rates in the 4 groups were 1.3%, 14.2%, 0% and 15.4%, respectively. Compared to non-elevated cTnl, the low-risk PESI had a higher negative predictive value (NPV) (98.9% vs 90.8%) and negative likelihood ratio (NLR) (0.1 vs 0.9) for predicting mortality. The addition of non-elevated cTnI to low-risk PESI did not improve the NPV or the NLR compared to either test alone. Conclusions: Compared to cTnl testing, PESI classification more accurately identified patients with PE who are at low risk of all-cause death within 30-days of presentation.