157 resultados para galaxies: clusters: individual: Abell 970
Resumo:
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
Resumo:
BACKGROUND: The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. RESULTS: We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. CONCLUSION: There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular - but possibly clusters of genes more generally - might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters.
Resumo:
OBJECTIVE: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether and how BMI clusters evolve over time in a population is currently unknown. We aimed to determine the spatial dependence of BMI and its 5-year evolution in a Swiss general adult urban population, taking into account the neighbourhood-level and individual-level characteristics. DESIGN: Cohort study. SETTING: Swiss general urban population. PARTICIPANTS: 6481 georeferenced individuals from the CoLaus cohort at baseline (age range 35-74 years, period=2003-2006) and 4460 at follow-up (period=2009-2012). OUTCOME MEASURES: Body weight and height were measured by trained healthcare professionals with participants standing without shoes in light indoor clothing. BMI was calculated as weight (kg) divided by height squared (m(2)). Participants were geocoded using their postal address (geographic coordinates of the place of residence). Getis-Ord Gi statistic was used to measure the spatial dependence of BMI values at baseline and its evolution at follow-up. RESULTS: BMI was not randomly distributed across the city. At baseline and at follow-up, significant clusters of high versus low BMIs were identified and remained stable during the two periods. These clusters were meaningfully attenuated after adjustment for neighbourhood-level income but not individual-level characteristics. Similar results were observed among participants who showed a significant weight gain. CONCLUSIONS: To the best of our knowledge, this is the first study to report longitudinal changes in BMI clusters in adults from a general population. Spatial clusters of high BMI persisted over a 5-year period and were mainly influenced by neighbourhood-level income.
Resumo:
OBJECTIVE-We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.RESEARCH DESIGN AND METHODS-Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl(2) and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Testa scanner and correlated with the corresponding (immuno)histological sections.RESULTS-In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of beta-cells was undervalued under the conditions tested. The experiments on the externalized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.CONCLUSIONS-Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853-2860, 2011
Resumo:
INTRODUCTION: EORTC trial 22991 was designed to evaluate the addition of concomitant and adjuvant short-term hormonal treatments to curative radiotherapy in terms of disease-free survival for patients with intermediate risk localized prostate cancer. In order to assess the compliance to the 3D conformal radiotherapy protocol guidelines, all participating centres were requested to participate in a dummy run procedure. An individual case review was performed for the largest recruiting centres as well. MATERIALS AND METHODS: CT-data of an eligible prostate cancer patient were sent to 30 centres including a description of the clinical case. The investigator was requested to delineate the volumes of interest and to perform treatment planning according to the protocol. Thereafter, the investigators of the 12 most actively recruiting centres were requested to provide data on five randomly selected patients for an individual case review. RESULTS: Volume delineation varied significantly between investigators. Dose constraints for organs at risk (rectum, bladder, hips) were difficult to meet. In the individual case review, no major protocol deviations were observed, but a number of dose reporting problems were documented for centres using IMRT. CONCLUSIONS: Overall, results of this quality assurance program were satisfactory. The efficacy of the combination of a dummy run procedure with an individual case review is confirmed in this study, as none of the evaluated patient files harboured a major protocol deviation. Quality assurance remains a very important tool in radiotherapy to increase the reliability of the trial results. Special attention should be given when designing quality assurance programs for more complex irradiation techniques.
Resumo:
Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.
Resumo:
In contemporary society, religious signification and secular systems mix and influence each other. Holistic conceptions of a world in which man is integrated harmoniously with nature meet representations of a world run by an immanent God. On the market of the various systems, the individual goes from one system to another, following his immediate needs and expectations without necessarily leaving any marks in a meaningful long term system. This article presents the first results of an ongoing research in Switzerland on contemporary religion focusing on (new) paths of socialization of modern that individuals and the various (non-) belief systems that they simultaneously develop
Resumo:
BACKGROUND: Menarche and menopause mark the onset and cessation, respectively, of ovarian activity associated with reproduction, and affect breast cancer risk. Our aim was to assess the strengths of their effects and determine whether they depend on characteristics of the tumours or the affected women. METHODS: Individual data from 117 epidemiological studies, including 118 964 women with invasive breast cancer and 306 091 without the disease, none of whom had used menopausal hormone therapy, were included in the analyses. We calculated adjusted relative risks (RRs) associated with menarche and menopause for breast cancer overall, and by tumour histology and by oestrogen receptor expression. FINDINGS: Breast cancer risk increased by a factor of 1·050 (95% CI 1·044-1·057; p<0·0001) for every year younger at menarche, and independently by a smaller amount (1·029, 1·025-1·032; p<0·0001), for every year older at menopause. Premenopausal women had a greater risk of breast cancer than postmenopausal women of an identical age (RR at age 45-54 years 1·43, 1·33-1·52, p<0·001). All three of these associations were attenuated by increasing adiposity among postmenopausal women, but did not vary materially by women's year of birth, ethnic origin, childbearing history, smoking, alcohol consumption, or hormonal contraceptive use. All three associations were stronger for lobular than for ductal tumours (p<0·006 for each comparison). The effect of menopause in women of an identical age and trends by age at menopause were stronger for oestrogen receptor-positive disease than for oestrogen receptor-negative disease (p<0·01 for both comparisons). INTERPRETATION: The effects of menarche and menopause on breast cancer risk might not be acting merely by lengthening women's total number of reproductive years. Endogenous ovarian hormones are more relevant for oestrogen receptor-positive disease than for oestrogen receptor-negative disease and for lobular than for ductal tumours. FUNDING: Cancer Research UK.
Resumo:
Spatio-temporal clusters in 1997?2003 fire sequences of Tuscany region (central Italy) have been identified and analysed by using the scan statistic, a method which was devised to evidence clusters in epidemiology. Results showed that the method is reliable to find clusters of events and to evaluate their significance via Monte Carlo replication. The evaluation of the presence of spatial and temporal patterns in fire occurrence and their significance could have a great impact in forthcoming studies on fire occurrences prediction.
Resumo:
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Resumo:
Texte intégral: http://www.springerlink.com/content/3q68180337551r47/fulltext.pdf
Resumo:
Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.