115 resultados para energetic constraint


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dispersal, i.e. individual movement between breeding sites, is a key process for metapopulation dynamics and gene flow. Its success can be modulated by phenotypic differences between dispersing and philopatric individuals, or dispersal syndromes. However, the environmental (external) and physiological (internal) constraints underlying such syndromes remain poorly known. This project aimed at clarifying the impact of environmental variation and oxidative constraints, linked to the reactive oxygen species produced during respiration, on phenotypes associated to dispersal in a passerine bird, the collared flycatcher Ficedula albicollis. Energetic demand was experimentally (i) increased through a wing load manipulation or (ii) relieved through food supplementation. The oxidative balance of breeding flycatchers was influenced by complex interactions of dispersal status and extrinsic factors (breeding density, year, experimental treatments). Interestingly, antioxidant capacity was influenced both by permanent individual differences and by food availability, whereas measures of pro-oxidants were highly variables within individuals. Environmental variation and energetic constraints also modulated the differences in reproduction associated with dispersal: dispersing and philopatric birds differ in their management of the oxidative balance when it is competing with reproductive investment. This thesis highlights that reaction norms, rather than fixed differences, often shape traits associated to dispersal. ----- Le déplacement d'un individu entre sites de reproduction, ou dispersion, est un processus clé pour la dynamique des métapopulations et les flux de gènes. Son succès peut être modulé par des différences de phénotype, ou syndromes de dispersion. Cependant, les contraintes environnementales et physiologiques qui sous-tendent ces syndromes restent mal connues. Ce projet vise à clarifier l'impact des variations environnementales et des contraintes oxydatives (liées aux espèces réactives de l'oxygène produites durant la respiration) sur les phénotypes associés à la dispersion chez un passereau, le gobemouche à collier Ficedula albicollis. La demande énergétique a été expérimentalement (i) augmentée en manipulant la surface alaire ou (ii) diminuée par une supplémentation en nourriture. L'équilibre oxydo-réducteur des gobemouches en reproduction est influencé par des interactions complexes entre statut de dispersion et facteurs extrinsèques (densité de couples reproducteurs, année, traitement expérimental). La capacité antioxydante dépend principalement de différences permanentes entre individus, alors que les pro-oxydants présentent de grandes variations intra-individu. Environnement et contraintes énergétiques modulent aussi les différences de reproduction liées à la dispersion : les oiseaux dispersants et philopatriques diffèrent dans leur gestion de l'équilibre oxydo-réducteur lorsqu'il est en compétition avec l'investissement reproducteur. Ce travail souligne que les traits associés à la dispersion sont souvent déterminés par des normes de réaction à l'environnement et non des différences fixées entre individus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites often exert severe negative effects upon their host's fitness. Natural selection has therefore prompted the evolution of anti-parasite mechanisms such as grooming. Grooming is efficient at reducing parasitic loads in both birds and mammals, but the energetic costs it entails have not been properly quantified. We measured both the energetic metabolism and behaviour of greater mouse-eared bats submitted to three different parasite loads (no, 20 and 40 mites) during whole daily cycles. Mites greatly affected their time and energy budgets. They caused increased grooming activity, reduced the overall time devoted to resting and provoked a dramatic shortening of resting bout duration. Correspondingly, the bats' overall metabolism (oxygen consumption) increased drastically with parasite intensity and, during the course of experiments, the bats lost more weight when infested with 40 rather than 20 or no parasites. The short-term energetic constraints induced by anti-parasite grooming are probably associated with long-term detrimental effects such as a decrease in survival and overall reproductive value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repeated presentation of simple objects as well as biologically salient objects can cause the adaptation of behavioral and neural responses during the visual categorization of these objects. Mechanisms of response adaptation during repeated food viewing are of particular interest for better understanding food intake beyond energetic needs. Here, we measured visual evoked potentials (VEPs) and conducted neural source estimations to initial and repeated presentations of high-energy and low-energy foods as well as non-food images. The results of our study show that the behavioral and neural responses to food and food-related objects are not uniformly affected by repetition. While the repetition of images displaying low-energy foods and non-food modulated VEPs as well as their underlying neural sources and increased behavioral categorization accuracy, the responses to high-energy images remained largely invariant between initial and repeated encounters. Brain mechanisms when viewing images of high-energy foods thus appear less susceptible to repetition effects than responses to low-energy and non-food images. This finding is likely related to the superior reward value of high-energy foods and might be one reason why in particular high-energetic foods are indulged although potentially leading to detrimental health consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of conservation between the human and mouse genomes resulted in the identification of a large number of conserved nongenic sequences (CNGs). The functional significance of this nongenic conservation remains unknown, however. The availability of the sequence of a third mammalian genome, the dog, allows for a large-scale analysis of evolutionary attributes of CNGs in mammals. We have aligned 1638 previously identified CNGs and 976 conserved exons (CODs) from human chromosome 21 (Hsa21) with their orthologous sequences in mouse and dog. Attributes of selective constraint, such as sequence conservation, clustering, and direction of substitutions were compared between CNGs and CODs, showing a clear distinction between the two classes. We subsequently performed a chromosome-wide analysis of CNGs by correlating selective constraint metrics with their position on the chromosome and relative to their distance from genes. We found that CNGs appear to be randomly arranged in intergenic regions, with no bias to be closer or farther from genes. Moreover, conservation and clustering of substitutions of CNGs appear to be completely independent of their distance from genes. These results suggest that the majority of CNGs are not typical of previously described regulatory elements in terms of their location. We propose models for a global role of CNGs in genome function and regulation, through long-distance cis or trans chromosomal interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to measure the energy used for growth of healthy fullterm and breast-fed Gambian infants. The weight gain (WG) of 14 infants (mean age +/- SEM 17 +/- 1 d, weight 3.581 +/- 0.105 kg) was measured over a 2-week period; the energy intake (EI) from breast milk was assessed for 24 h in the middle of the study period by weighing the infant before and after each breast-feed. On the same day, sleeping energy expenditure (SEE) and respiratory quotient (RQ) were measured for 30 min on five occasions through the 24-h period. EI averaged 502 +/- 25 kJ/kg.d, and SEE 230 +/- 6 kJ/kg.d; thus, an average of 272 kJ/kg.d were available for physical activity and the energy stored for growth. The total energy spent by infants while sleeping and for periods of physical activity was calculated to be 1.7 x SEE. The mean RQ measured on five occasions averaged 0.879 +/- 0.009. SEE was correlated with WG (r = 0.747, P less than 0.005), with a slope of the regression line of 5.5 kJ/g; this value can be considered as an estimate of the energy spent for new tissue synthesis in the resting infant. The efficiency of weight gain was lower in this study (67%) than in studies conducted on fast-growing preterm infants or children recovering from malnutrition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: One central concept in evolutionary ecology is that current and residual reproductive values are negatively linked by the so-called cost of reproduction. Previous studies examining the nature of this cost suggested a possible involvement of oxidative stress resulting from the imbalance between pro- and anti-oxidant processes. Still, data remain conflictory probably because, although oxidative damage increases during reproduction, high systemic levels of oxidative stress might also constrain parental investment in reproduction. Here, we investigated variation in oxidative balance (i.e. oxidative damage and antioxidant defences) over the course of reproduction by comparing female laboratory mice rearing or not pups. RESULTS: A significant increase in oxidative damage over time was only observed in females caring for offspring, whereas antioxidant defences increased over time regardless of reproductive status. Interestingly, oxidative damage measured prior to reproduction was negatively associated with litter size at birth (constraint), whereas damage measured after reproduction was positively related to litter size at weaning (cost). CONCLUSIONS: Globally, our correlative results and the review of literature describing the links between reproduction and oxidative stress underline the importance of timing/dynamics when studying and interpreting oxidative balance in relation to reproduction. Our study highlights the duality (constraint and cost) of oxidative stress in life-history trade-offs, thus supporting the theory that oxidative stress plays a key role in life-history evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do our brains implicitly track the energetic content of the foods we see? Using electrical neuroimaging of visual evoked potentials (VEPs) we show that the human brain can rapidly discern food's energetic value, vis à vis its fat content, solely from its visual presentation. Responses to images of high-energy and low-energy food differed over two distinct time periods. The first period, starting at approximately 165 ms post-stimulus onset, followed from modulations in VEP topography and by extension in the configuration of the underlying brain network. Statistical comparison of source estimations identified differences distributed across a wide network including both posterior occipital regions and temporo-parietal cortices typically associated with object processing, and also inferior frontal cortices typically associated with decision-making. During a successive processing stage (starting at approximately 300 ms), responses differed both topographically and in terms of strength, with source estimations differing predominantly within prefrontal cortical regions implicated in reward assessment and decision-making. These effects occur orthogonally to the task that is actually being performed and suggest that reward properties such as a food's energetic content are treated rapidly and in parallel by a distributed network of brain regions involved in object categorization, reward assessment, and decision-making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Cerebral palsy (CP) is the most common physical disability in childhood. It is a disorder resulting from sensory and motor impairments due to perinatal brain injury, with lifetime consequences that range from poor adaptive and social function to communication and emotional disturbances. Infants with CP have a fundamental disadvantage in recovering motor function: they do not receive accurate sensory feedback from their movements, leading to developmental disregard. Constraint-induced movement therapy (CIMT) is one of the few effective neurorehabilitative strategies shown to improve upper extremity motor function in adults and older children with CP, potentially overcoming developmental disregard. METHODS AND ANALYSIS: This study is a randomised controlled trial of children 12-24 months corrected age studying the effectiveness of CIMT combined with motor and sensory-motor interventions. The study population will comprise 72 children with CP and 144 typically developing children for a total of N=216 children. All children with CP, regardless of group allocation will continue with their standard of care occupational and physical therapy throughout the study. The research material collected will be in the form of data from high-density array event-related potential scan, standardised assessment scores and motion analysis scores. ETHICS AND DISSEMINATION: The study protocol was approved by the Institutional Review Board. The findings of the trial will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER: NCT02567630.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alpha1b-adrenergic receptor (AR) is a member of the large superfamily of seven transmembrane domain (TMD) G protein-coupled receptors (GPCR). Combining site-directed mutagenesis of the alpha1b-AR with computational simulations of receptor dynamics, we have explored the conformational changes underlying the process of receptor activation, i.e. the transition between the inactive and active states. Our findings suggest that the structural constraint stabilizing the alpha1b-AR in the inactive form is a network of H-bonding interactions amongst conserved residues forming a polar pocket and R143 of the DRY sequence at the end of TMDIII. We have recently reported that point mutations of D142, of the DRY sequence and of A293 in the distal portion of the third intracellular loop resulted in ligand-independent (constitutive) activation of the alpha1b-AR. These constitutively activating mutations could induce perturbations resulting in the shift of R143 out of the polar pocket. The main role of R143 may be to mediate receptor activation by triggering the exposure of several basic amino acids of the intracellular loops towards the G protein. Our investigation has been extended also to the biochemical events involved in the desensitization process of alpha1b-AR. Our results indicate that immediately following agonist-induced activation, the alpha1b-AR can undergo rapid agonist-induced phosphorylation and desensitization. Different members of the G protein coupled receptor kinase family can play a role in agonist-induced regulation of the alpha1b-AR. In addition, constitutively active alpha1b-AR mutants display different phosphorylation and internalization features. The future goal is to further elucidate the molecular mechanism underlying the complex equilibrium between activation and inactivation of the alpha1b-AR and its regulation by pharmacological substances. These findings can help to elucidate the mechanism of action of various agents displaying properties of agonists or inverse agonists at the adrenergic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Every spring, workers of the Argentine Ant Linepithema humile kill a large proportion of queens within their nests, Although this behaviour inflicts a high energetic cost oil the colonies, its biological significance has remained elusive so far. An earlier study showed that the probability of a queen being executed is not related to her weight, fecundity, or age. Here we test the hypothesis that workers collectively eliminate queens to which they are less related, thereby increasing their inclusive fitness. We found no evidence for this hypothesis. Workers of a nest were on average not significantly less related to executed queens than to surviving ones. Moreover, a population genetic analysis revealed that workers were not genetically differentiated between nests. This means that workers of a given nest are equally related to any queen in the population and that there can be no increase in average worker-queen relatedness by selective elimination of queens. Finally, our genetic analyses also showed that, in contrast to workers, queens were significantly genetically differentiated between nests and that there was significant isolation by distance for queens.