16 resultados para competing risks model
Resumo:
BACKGROUND: Extracapsular tumor spread (ECS) has been identified as a possible risk factor for breast cancer recurrence, but controversy exists regarding its role in decision making for regional radiotherapy. This study evaluates ECS as a predictor of local, axillary, and supraclavicular recurrence. PATIENTS AND METHODS: International Breast Cancer Study Group Trial VI accrued 1475 eligible pre- and perimenopausal women with node-positive breast cancer who were randomly assigned to receive three to nine courses of classical combination chemotherapy with cyclophosphamide, methotrexate, and fluorouracil. ECS status was determined retrospectively in 933 patients based on review of pathology reports. Cumulative incidence and hazard ratios (HRs) were estimated using methods for competing risks analysis. Adjustment factors included treatment group and baseline patient and tumor characteristics. The median follow-up was 14 years. RESULTS: In univariable analysis, ECS was significantly associated with supraclavicular recurrence (HR = 1.96; 95% confidence interval 1.23-3.13; P = 0.005). HRs for local and axillary recurrence were 1.38 (P = 0.06) and 1.81 (P = 0.11), respectively. Following adjustment for number of lymph node metastases and other baseline prognostic factors, ECS was not significantly associated with any of the three recurrence types studied. CONCLUSIONS: Our results indicate that the decision for additional regional radiotherapy should not be based solely on the presence of ECS.
Resumo:
OBJECTIVES: We studied the influence of noninjecting and injecting drug use on mortality, dropout rate, and the course of antiretroviral therapy (ART), in the Swiss HIV Cohort Study (SHCS). METHODS: Cohort participants, registered prior to April 2007 and with at least one drug use questionnaire completed until May 2013, were categorized according to their self-reported drug use behaviour. The probabilities of death and dropout were separately analysed using multivariable competing risks proportional hazards regression models with mutual correction for the other endpoint. Furthermore, we describe the influence of drug use on the course of ART. RESULTS: A total of 6529 participants (including 31% women) were followed during 31 215 person-years; 5.1% participants died; 10.5% were lost to follow-up. Among persons with homosexual or heterosexual HIV transmission, noninjecting drug use was associated with higher all-cause mortality [subhazard rate (SHR) 1.73; 95% confidence interval (CI) 1.07-2.83], compared with no drug use. Also, mortality was increased among former injecting drug users (IDUs) who reported noninjecting drug use (SHR 2.34; 95% CI 1.49-3.69). Noninjecting drug use was associated with higher dropout rates. The mean proportion of time with suppressed viral replication was 82.2% in all participants, irrespective of ART status, and 91.2% in those on ART. Drug use lowered adherence, and increased rates of ART change and ART interruptions. Virological failure on ART was more frequent in participants who reported concomitant drug injections while on opiate substitution, and in current IDUs, but not among noninjecting drug users. CONCLUSIONS: Noninjecting drug use and injecting drug use are modifiable risks for death, and they lower retention in a cohort and complicate ART.
Resumo:
OBJECTIVE: To compare outcomes of patients with lymph node (LN)-positive urothelial carcinoma of the bladder (UCB) treated with or without cisplatin-based combined adjuvant chemotherapy (AC) after radical cystectomy (RC). PATIENTS AND METHODS: We retrospectively analysed 1523 patients with LN-positive UCB, who underwent RC with bilateral pelvic LN dissection. All patients had no evidence of disease after RC. AC was administered within 3 months. Competing-risks models were applied to compare UCB-related mortality. RESULTS: Of the 1523 patients, 874 (57.4%) received AC. The cumulative 1-, 2- and 5-year UCB-related mortality rates for all patients were 16%, 36% and 56%, respectively. Administration of AC was associated with an 18% relative reduction in the risk of UCB-related death (subhazard ratio 0.82, P = 0.005). The absolute reduction in mortality was 3.5% at 5 years. The positive effect of AC was detectable in patients aged ≤70 years, in women, in pT3-4 disease, and in those with a higher LN density and lymphovascular invasion. This study is limited by its retrospective and non-randomised design, selection bias, the absence of central pathological review and lack in standardisation of LN dissection and cisplatin-based protocols. CONCLUSION: AC seems to reduce UCB-related mortality in patients with LN-positive UCB after RC. Younger patients, women and those with high-risk features such as pT3-4 disease, a higher LN density and lymphovascular invasion appear to benefit most. Appropriately powered prospective randomised trials are necessary to confirm these findings.
Resumo:
OBJECTIVE: To evaluate the effect of adjuvant chemotherapy (AC) on mortality after radical nephroureterectomy (RNU) for upper tract urothelial carcinoma (UTUC) with positive lymph nodes (LNs) and to identify patient subgroups that are most likely to benefit from AC. PATIENTS AND METHODS: We retrospectively analysed data of 263 patients with LN-positive UTUC, who underwent full surgical resection. In all, 107 patients (41%) received three to six cycles of AC, while 156 (59.3%) were treated with RNU alone. UTUC-related mortality was evaluated using competing-risks regression models. RESULTS: In all patients (Tall N+), administration of AC had no significant impact on UTUC-related mortality on univariable (P = 0.49) and multivariable (P = 0.11) analysis. Further stratified analyses showed that only N+ patients with pT3-4 disease benefited from AC. In this subgroup, AC reduced UTUC-related mortality by 34% (P = 0.019). The absolute difference in mortality was 10% after the first year and increased to 23% after 5 years. On multivariable analysis, administration of AC was associated with significantly reduced UTUC-related mortality (subhazard ratio 0.67, P = 0.022). Limitations of this study are the retrospective non-randomised design, selection bias, absence of a central pathological review and different AC protocols. CONCLUSIONS: AC seems to reduce mortality in patients with pT3-4 LN-positive UTUC after RNU. This subgroup of LN-positive patients could serve as target population for an AC prospective randomised trial.
Resumo:
The localization of Last Glacial Maximum (LGM) refugia is crucial information to understand a species' history and predict its reaction to future climate changes. However, many phylogeographical studies often lack sampling designs intensive enough to precisely localize these refugia. The hairy land snail Trochulus villosus has a small range centred on Switzerland, which could be intensively covered by sampling 455 individuals from 52 populations. Based on mitochondrial DNA sequences (COI and 16S), we identified two divergent lineages with distinct geographical distributions. Bayesian skyline plots suggested that both lineages expanded at the end of the LGM. To find where the origin populations were located, we applied the principles of ancestral character reconstruction and identified a candidate refugium for each mtDNA lineage: the French Jura and Central Switzerland, both ice-free during the LGM. Additional refugia, however, could not be excluded, as suggested by the microsatellite analysis of a population subset. Modelling the LGM niche of T. villosus, we showed that suitable climatic conditions were expected in the inferred refugia, but potentially also in the nunataks of the alpine ice shield. In a model selection approach, we compared several alternative recolonization scenarios by estimating the Akaike information criterion for their respective maximum-likelihood migration rates. The 'two refugia' scenario received by far the best support given the distribution of genetic diversity in T. villosus populations. Provided that fine-scale sampling designs and various analytical approaches are combined, it is possible to refine our necessary understanding of species responses to environmental changes.
Resumo:
Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.
Resumo:
AbstractBreast cancer is one of the most common cancers affecting one in eight women during their lives. Survival rates have increased steadily thanks to early diagnosis with mammography screening and more efficient treatment strategies. Post-operative radiation therapy is a standard of care in the management of breast cancer and has been shown to reduce efficiently both local recurrence rate and breast cancer mortality. Radiation therapy is however associated with some late effects for long-term survivors. Radiation-induced secondary cancer is a relatively rare but severe late effect of radiation therapy. Currently, radiotherapy plans are essentially optimized to maximize tumor control and minimize late deterministic effects (tissue reactions) that are mainly associated with high doses (» 1 Gy). With improved cure rates and new radiation therapy technologies, it is also important to evaluate and minimize secondary cancer risks for different treatment techniques. This is a particularly challenging task due to the large uncertainties in the dose-response relationship.In contrast with late deterministic effects, secondary cancers may be associated with much lower doses and therefore out-of-field doses (also called peripheral doses) that are typically inferior to 1 Gy need to be determined accurately. Out-of-field doses result from patient scatter and head scatter from the treatment unit. These doses are particularly challenging to compute and we characterized it by Monte Carlo (MC) calculation. A detailed MC model of the Siemens Primus linear accelerator has been thoroughly validated with measurements. We investigated the accuracy of such a model for retrospective dosimetry in epidemiological studies on secondary cancers. Considering that patients in such large studies could be treated on a variety of machines, we assessed the uncertainty in reconstructed peripheral dose due to the variability of peripheral dose among various linac geometries. For large open fields (> 10x10 cm2), the uncertainty would be less than 50%, but for small fields and wedged fields the uncertainty in reconstructed dose could rise up to a factor of 10. It was concluded that such a model could be used for conventional treatments using large open fields only.The MC model of the Siemens Primus linac was then used to compare out-of-field doses for different treatment techniques in a female whole-body CT-based phantom. Current techniques such as conformai wedged-based radiotherapy and hybrid IMRT were investigated and compared to older two-dimensional radiotherapy techniques. MC doses were also compared to those of a commercial Treatment Planning System (TPS). While the TPS is routinely used to determine the dose to the contralateral breast and the ipsilateral lung which are mostly out of the treatment fields, we have shown that these doses may be highly inaccurate depending on the treatment technique investigated. MC shows that hybrid IMRT is dosimetrically similar to three-dimensional wedge-based radiotherapy within the field, but offers substantially reduced doses to out-of-field healthy organs.Finally, many different approaches to risk estimations extracted from the literature were applied to the calculated MC dose distribution. Absolute risks varied substantially as did the ratio of risk between two treatment techniques, reflecting the large uncertainties involved with current risk models. Despite all these uncertainties, the hybrid IMRT investigated resulted in systematically lower cancer risks than any of the other treatment techniques. More epidemiological studies with accurate dosimetry are required in the future to construct robust risk models. In the meantime, any treatment strategy that reduces out-of-field doses to healthy organs should be investigated. Electron radiotherapy might offer interesting possibilities with this regard.RésuméLe cancer du sein affecte une femme sur huit au cours de sa vie. Grâce au dépistage précoce et à des thérapies de plus en plus efficaces, le taux de guérison a augmenté au cours du temps. La radiothérapie postopératoire joue un rôle important dans le traitement du cancer du sein en réduisant le taux de récidive et la mortalité. Malheureusement, la radiothérapie peut aussi induire des toxicités tardives chez les patients guéris. En particulier, les cancers secondaires radio-induits sont une complication rare mais sévère de la radiothérapie. En routine clinique, les plans de radiothérapie sont essentiellement optimisées pour un contrôle local le plus élevé possible tout en minimisant les réactions tissulaires tardives qui sont essentiellement associées avec des hautes doses (» 1 Gy). Toutefois, avec l'introduction de différentes nouvelles techniques et avec l'augmentation des taux de survie, il devient impératif d'évaluer et de minimiser les risques de cancer secondaire pour différentes techniques de traitement. Une telle évaluation du risque est une tâche ardue étant donné les nombreuses incertitudes liées à la relation dose-risque.Contrairement aux effets tissulaires, les cancers secondaires peuvent aussi être induits par des basses doses dans des organes qui se trouvent hors des champs d'irradiation. Ces organes reçoivent des doses périphériques typiquement inférieures à 1 Gy qui résultent du diffusé du patient et du diffusé de l'accélérateur. Ces doses sont difficiles à calculer précisément, mais les algorithmes Monte Carlo (MC) permettent de les estimer avec une bonne précision. Un modèle MC détaillé de l'accélérateur Primus de Siemens a été élaboré et validé avec des mesures. La précision de ce modèle a également été déterminée pour la reconstruction de dose en épidémiologie. Si on considère que les patients inclus dans de larges cohortes sont traités sur une variété de machines, l'incertitude dans la reconstruction de dose périphérique a été étudiée en fonction de la variabilité de la dose périphérique pour différents types d'accélérateurs. Pour de grands champs (> 10x10 cm ), l'incertitude est inférieure à 50%, mais pour de petits champs et des champs filtrés, l'incertitude de la dose peut monter jusqu'à un facteur 10. En conclusion, un tel modèle ne peut être utilisé que pour les traitements conventionnels utilisant des grands champs.Le modèle MC de l'accélérateur Primus a été utilisé ensuite pour déterminer la dose périphérique pour différentes techniques dans un fantôme corps entier basé sur des coupes CT d'une patiente. Les techniques actuelles utilisant des champs filtrés ou encore l'IMRT hybride ont été étudiées et comparées par rapport aux techniques plus anciennes. Les doses calculées par MC ont été comparées à celles obtenues d'un logiciel de planification commercial (TPS). Alors que le TPS est utilisé en routine pour déterminer la dose au sein contralatéral et au poumon ipsilatéral qui sont principalement hors des faisceaux, nous avons montré que ces doses peuvent être plus ou moins précises selon la technTque étudiée. Les calculs MC montrent que la technique IMRT est dosimétriquement équivalente à celle basée sur des champs filtrés à l'intérieur des champs de traitement, mais offre une réduction importante de la dose aux organes périphériques.Finalement différents modèles de risque ont été étudiés sur la base des distributions de dose calculées par MC. Les risques absolus et le rapport des risques entre deux techniques de traitement varient grandement, ce qui reflète les grandes incertitudes liées aux différents modèles de risque. Malgré ces incertitudes, on a pu montrer que la technique IMRT offrait une réduction du risque systématique par rapport aux autres techniques. En attendant des données épidémiologiques supplémentaires sur la relation dose-risque, toute technique offrant une réduction des doses périphériques aux organes sains mérite d'être étudiée. La radiothérapie avec des électrons offre à ce titre des possibilités intéressantes.
Resumo:
Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative.
Resumo:
Over the last two decades, thanks to the discovery of several pharmaceutical agents, multiple sclerosis (MS) has been transformed into a treatable disorder although the degree of therapeutic response may vary considerably. As more medications find their entry into the MS market, a clinician faces a mounting challenge of comparing risk and benefit profiles of various agents in an attempt to find the best treatment approach for each individual patient. In this review, we aim to summarize the available data on safety profiles of available MS therapies while focusing mostly on serious medication specific potential adverse events without discussing the teratogenic potential of each agent (unless there is a black box warning) or hypersensitivity reactions. Our goal is to provide a clinician with guidance on assuring the appropriate safety monitoring for patients treated with one of the agents discussed. We also comment on the future of risk management in MS and discuss possible enhancements to the current model of drug approval process and general strategies to improve the patient safety.
Resumo:
Practice of psychiatric hospitalization has considerably changed: deinstitutionnalization, brief hospitalizations, opened units, partnership with patients and complementarity with community mental health services. These changes appear simultaneously in most of industrialized countries. They are the result of social changes, evolution of mental health care, and a sharper perception of deinsertion risks through long term hospitalizations. Values of psychiatric hospital were based on a closed and protective place, where community life prepared to life in the community; they are now founded on an opened place where care aims at resolving crisis and keeping closely in touch with the community. These modifications imply to rethink hospital psychiatric care and their connections with environment. This paper describe a model of care developed in a first admission psychiatric unit.
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise-heat exposures over 1-2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat.
Resumo:
Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimise performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimise performance is to heat acclimatise. Heat acclimatisation should comprise repeated exercise-heat exposures over 1-2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimise dehydration during exercise. Following the development of commercial cooling systems (eg, cooling-vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organisers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimising the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events, for hydration and body cooling opportunities, when competitions are held in the heat.
Resumo:
Le cancer testiculaire, bien que peu fréquent, revêt une importance particulière en oncologie ; il représente actuellement un modèle pour optimiser un suivi radiologique tout en essayant de diminuer l'apparition de tumeurs radio-induites.En effet, cette pathologie présente un taux très élevé de survie nécessitant, au vu du jeune âge des patients, des bilans radiologiques à long terme, auxquels pourront être liés des effets secondaires, en particulier les tumeurs secondaires.Afin de diminuer cela, les recommandations de prise en charge ont évolué et les protocoles de radiologie s'améliorent afin d'exposer à moins de rayonnements ionisants pour un résultat identique.Il est donc devenu primordial de maintenir un suivi optimal tout en essayant d'en minimiser la toxicité. Despite being rare cancers, testicular seminoma and non-seminoma play an important role in oncology: they represent a model on how to optimize radiological follow-up, aiming at a lowest possible radiation exposure and secondary cancer risk. Males diagnosed with testicular cancer undergo frequently prolonged follow-up with CT-scans with potential toxic side effects, in particular secondary cancers. To reduce the risks linked to ionizing radiation, precise follow-up protocols have been developed. The number of recommended CT-scanners has been significantly reduced over the last 10 years. The CT scanners have evolved technically and new acquisition protocols have the potential to reduce the radiation exposure further.
Resumo:
La tomodensitométrie (TDM) est une technique d'imagerie pour laquelle l'intérêt n'a cessé de croitre depuis son apparition au début des années 70. De nos jours, l'utilisation de cette technique est devenue incontournable, grâce entre autres à sa capacité à produire des images diagnostiques de haute qualité. Toutefois, et en dépit d'un bénéfice indiscutable sur la prise en charge des patients, l'augmentation importante du nombre d'examens TDM pratiqués soulève des questions sur l'effet potentiellement dangereux des rayonnements ionisants sur la population. Parmi ces effets néfastes, l'induction de cancers liés à l'exposition aux rayonnements ionisants reste l'un des risques majeurs. Afin que le rapport bénéfice-risques reste favorable au patient il est donc nécessaire de s'assurer que la dose délivrée permette de formuler le bon diagnostic tout en évitant d'avoir recours à des images dont la qualité est inutilement élevée. Ce processus d'optimisation, qui est une préoccupation importante pour les patients adultes, doit même devenir une priorité lorsque l'on examine des enfants ou des adolescents, en particulier lors d'études de suivi requérant plusieurs examens tout au long de leur vie. Enfants et jeunes adultes sont en effet beaucoup plus sensibles aux radiations du fait de leur métabolisme plus rapide que celui des adultes. De plus, les probabilités des évènements auxquels ils s'exposent sont également plus grandes du fait de leur plus longue espérance de vie. L'introduction des algorithmes de reconstruction itératifs, conçus pour réduire l'exposition des patients, est certainement l'une des plus grandes avancées en TDM, mais elle s'accompagne de certaines difficultés en ce qui concerne l'évaluation de la qualité des images produites. Le but de ce travail est de mettre en place une stratégie pour investiguer le potentiel des algorithmes itératifs vis-à-vis de la réduction de dose sans pour autant compromettre la qualité du diagnostic. La difficulté de cette tâche réside principalement dans le fait de disposer d'une méthode visant à évaluer la qualité d'image de façon pertinente d'un point de vue clinique. La première étape a consisté à caractériser la qualité d'image lors d'examen musculo-squelettique. Ce travail a été réalisé en étroite collaboration avec des radiologues pour s'assurer un choix pertinent de critères de qualité d'image. Une attention particulière a été portée au bruit et à la résolution des images reconstruites à l'aide d'algorithmes itératifs. L'analyse de ces paramètres a permis aux radiologues d'adapter leurs protocoles grâce à une possible estimation de la perte de qualité d'image liée à la réduction de dose. Notre travail nous a également permis d'investiguer la diminution de la détectabilité à bas contraste associée à une diminution de la dose ; difficulté majeure lorsque l'on pratique un examen dans la région abdominale. Sachant que des alternatives à la façon standard de caractériser la qualité d'image (métriques de l'espace Fourier) devaient être utilisées, nous nous sommes appuyés sur l'utilisation de modèles d'observateurs mathématiques. Nos paramètres expérimentaux ont ensuite permis de déterminer le type de modèle à utiliser. Les modèles idéaux ont été utilisés pour caractériser la qualité d'image lorsque des paramètres purement physiques concernant la détectabilité du signal devaient être estimés alors que les modèles anthropomorphes ont été utilisés dans des contextes cliniques où les résultats devaient être comparés à ceux d'observateurs humain, tirant profit des propriétés de ce type de modèles. Cette étude a confirmé que l'utilisation de modèles d'observateurs permettait d'évaluer la qualité d'image en utilisant une approche basée sur la tâche à effectuer, permettant ainsi d'établir un lien entre les physiciens médicaux et les radiologues. Nous avons également montré que les reconstructions itératives ont le potentiel de réduire la dose sans altérer la qualité du diagnostic. Parmi les différentes reconstructions itératives, celles de type « model-based » sont celles qui offrent le plus grand potentiel d'optimisation, puisque les images produites grâce à cette modalité conduisent à un diagnostic exact même lors d'acquisitions à très basse dose. Ce travail a également permis de clarifier le rôle du physicien médical en TDM: Les métriques standards restent utiles pour évaluer la conformité d'un appareil aux requis légaux, mais l'utilisation de modèles d'observateurs est inévitable pour optimiser les protocoles d'imagerie. -- Computed tomography (CT) is an imaging technique in which interest has been quickly growing since it began to be used in the 1970s. Today, it has become an extensively used modality because of its ability to produce accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase in the number of CT examinations performed has raised concerns about the potential negative effects of ionising radiation on the population. Among those negative effects, one of the major risks remaining is the development of cancers associated with exposure to diagnostic X-ray procedures. In order to ensure that the benefits-risk ratio still remains in favour of the patient, it is necessary to make sure that the delivered dose leads to the proper diagnosis without producing unnecessarily high-quality images. This optimisation scheme is already an important concern for adult patients, but it must become an even greater priority when examinations are performed on children or young adults, in particular with follow-up studies which require several CT procedures over the patient's life. Indeed, children and young adults are more sensitive to radiation due to their faster metabolism. In addition, harmful consequences have a higher probability to occur because of a younger patient's longer life expectancy. The recent introduction of iterative reconstruction algorithms, which were designed to substantially reduce dose, is certainly a major achievement in CT evolution, but it has also created difficulties in the quality assessment of the images produced using those algorithms. The goal of the present work was to propose a strategy to investigate the potential of iterative reconstructions to reduce dose without compromising the ability to answer the diagnostic questions. The major difficulty entails disposing a clinically relevant way to estimate image quality. To ensure the choice of pertinent image quality criteria this work was continuously performed in close collaboration with radiologists. The work began by tackling the way to characterise image quality when dealing with musculo-skeletal examinations. We focused, in particular, on image noise and spatial resolution behaviours when iterative image reconstruction was used. The analyses of the physical parameters allowed radiologists to adapt their image acquisition and reconstruction protocols while knowing what loss of image quality to expect. This work also dealt with the loss of low-contrast detectability associated with dose reduction, something which is a major concern when dealing with patient dose reduction in abdominal investigations. Knowing that alternative ways had to be used to assess image quality rather than classical Fourier-space metrics, we focused on the use of mathematical model observers. Our experimental parameters determined the type of model to use. Ideal model observers were applied to characterise image quality when purely objective results about the signal detectability were researched, whereas anthropomorphic model observers were used in a more clinical context, when the results had to be compared with the eye of a radiologist thus taking advantage of their incorporation of human visual system elements. This work confirmed that the use of model observers makes it possible to assess image quality using a task-based approach, which, in turn, establishes a bridge between medical physicists and radiologists. It also demonstrated that statistical iterative reconstructions have the potential to reduce the delivered dose without impairing the quality of the diagnosis. Among the different types of iterative reconstructions, model-based ones offer the greatest potential, since images produced using this modality can still lead to an accurate diagnosis even when acquired at very low dose. This work has clarified the role of medical physicists when dealing with CT imaging. The use of the standard metrics used in the field of CT imaging remains quite important when dealing with the assessment of unit compliance to legal requirements, but the use of a model observer is the way to go when dealing with the optimisation of the imaging protocols.