612 resultados para brain sulcus


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Survival of children born prematurely or with very low birth weight has increased dramatically, but the long term developmental outcome remains unknown. Many children have deficits in cognitive capacities, in particular involving executive domains and those disabilities are likely to involve a central nervous system deficit. To understand their neurostructural origin, we use DTI. Structurally segregated and functionally regions of the cerebral cortex are interconnected by a dense network of axonal pathways. We noninvasively map these pathways across cortical hemispheres and construct normalized structural connection matrices derived from DTI MR tractography. Group comparisons of brain connectivity reveal significant changes in fiber density in case of children with poor intrauterine grown and extremely premature children (gestational age<28 weeks at birth) compared to control subjects. This changes suggest a link between cortico-axonal pathways and the central nervous system deficit. Methods: Sixty premature born infants (5-6 years old) were scanned on clinical 3T scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) at two hospitals (HUG, Geneva and CHUV, Lausanne). For each subject, T1-weighted MPRAGE images (TR/TE=2500/2.91,TI=1100, resolution=1x1x1mm, matrix=256x154) and DTI images (30 directions, TR/TE=10200/107, in-plane resolution=1.8x1.8x2mm, 64 axial, matrix=112x112) were acquired. Parent(s) provided written consent on prior ethical board approval. The extraction of the Whole Brain Structural Connectivity Matrix was performed following (Cammoun, 2009 and Hagmann, 2008). The MPARGE images were registered using an affine registration to the non-weighted-DTI and WM-GM segmentation performed on it. In order to have equal anatomical localization among subjects, 66 cortical regions with anatomical landmarks were created using the curvature information, i.e. sulcus and gyrus (Cammoun et al, 2007; Fischl et al, 2004; Desikan et al, 2006) with freesurfer software (http://surfer.nmr.mgh.harvard.edu/). Tractography was performed in WM using an algorithm especially designed for DTI/DSI data (Hagmann et al., 2007) and both information were then combined in a matrix. Each row and column of the matrix corresponds to a particular ROI. Each cell of index (i,j) represents the fiber density of the bundle connecting the ROIs i and j. Subdividing each cortical region, we obtained 4 Connectivity Matrices of different resolution (33, 66, 125 and 250 ROI/hemisphere) for each subject . Subjects were sorted in 3 different groups, namely (1) control, (2) Intrauterine Growth Restriction (IUGR), (3) Extreme Prematurity (EP), depending on their gestational age, weight and percentile-weight score at birth. Group-to-group comparisons were performed between groups (1)-(2) and (1)-(3). The mean age at examination of the three groups were similar. Results: Quantitative analysis were performed between groups to determine fibers density differences. For each group, a mean connectivity matrix with 33ROI/hemisphere resolution was computed. On the other hand, for all matrix resolutions (33,66,125,250 ROI/hemisphere), the number of bundles were computed and averaged. As seen in figure 1, EP and IUGR subjects present an overall reduction of fibers density in both interhemispherical and intrahemispherical connections. This is given quantitatively in table 1. IUGR subjects presents a higher percentage of missing fiber bundles than EP when compared to control subjects (~16% against 11%). When comparing both groups to control subjects, for the EP subjects, the occipito-parietal regions seem less interhemispherically connected whilst the intrahemispherical networks present lack of fiber density in the lymbic system. Children born with IUGR, have similar reductions in interhemispherical connections than the EP. However, the cuneus and precuneus connections with the precentral and paracentral lobe are even lower than in the case of the EP. For the intrahemispherical connections the IUGR group preset a loss of fiber density between the deep gray matter structures (striatum) and the frontal and middlefrontal poles, connections typically involved in the control of executive functions. For the qualitative analysis, a t-test comparing number of bundles (p-value<0.05) gave some preliminary significant results (figure 2). Again, even if both IUGR and EP appear to have significantly less connections comparing to the control subjects, the IUGR cohort seems to present a higher lack of fiber density specially relying the cuneus, precuneus and parietal areas. In terms of fiber density, preliminary Wilcoxon tests seem to validate the hypothesis set by the previous analysis. Conclusions: The goal of this study was to determine the effect of extreme prematurity and poor intrauterine growth on neurostructural development at the age of 6 years-old. This data indicates that differences in connectivity may well be the basis for the neurostructural and neuropsychological deficit described in these populations in the absence of overt brain lesions (Inder TE, 2005; Borradori-Tolsa, 2004; Dubois, 2008). Indeed, we suggest that IUGR and prematurity leads to alteration of connectivity between brain structures, especially in occipito-parietal and frontal lobes for EP and frontal and middletemporal poles for IUGR. Overall, IUGR children have a higher loss of connectivity in the overall connectivity matrix than EP children. In both cases, the localized alteration of connectivity suggests a direct link between cortico-axonal pathways and the central nervous system deficit. Our next step is to link these connectivity alterations to the performance in executive function tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. METHODS: We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. RESULTS: An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). CONCLUSIONS: This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé: Le développement rapide de nouvelles technologies comme l'imagerie médicale a permis l'expansion des études sur les fonctions cérébrales. Le rôle principal des études fonctionnelles cérébrales est de comparer l'activation neuronale entre différents individus. Dans ce contexte, la variabilité anatomique de la taille et de la forme du cerveau pose un problème majeur. Les méthodes actuelles permettent les comparaisons interindividuelles par la normalisation des cerveaux en utilisant un cerveau standard. Les cerveaux standards les plus utilisés actuellement sont le cerveau de Talairach et le cerveau de l'Institut Neurologique de Montréal (MNI) (SPM99). Les méthodes de recalage qui utilisent le cerveau de Talairach, ou celui de MNI, ne sont pas suffisamment précises pour superposer les parties plus variables d'un cortex cérébral (p.ex., le néocortex ou la zone perisylvienne), ainsi que les régions qui ont une asymétrie très importante entre les deux hémisphères. Le but de ce projet est d'évaluer une nouvelle technique de traitement d'images basée sur le recalage non-rigide et utilisant les repères anatomiques. Tout d'abord, nous devons identifier et extraire les structures anatomiques (les repères anatomiques) dans le cerveau à déformer et celui de référence. La correspondance entre ces deux jeux de repères nous permet de déterminer en 3D la déformation appropriée. Pour les repères anatomiques, nous utilisons six points de contrôle qui sont situés : un sur le gyrus de Heschl, un sur la zone motrice de la main et le dernier sur la fissure sylvienne, bilatéralement. Evaluation de notre programme de recalage est accomplie sur les images d'IRM et d'IRMf de neuf sujets parmi dix-huit qui ont participés dans une étude précédente de Maeder et al. Le résultat sur les images anatomiques, IRM, montre le déplacement des repères anatomiques du cerveau à déformer à la position des repères anatomiques de cerveau de référence. La distance du cerveau à déformer par rapport au cerveau de référence diminue après le recalage. Le recalage des images fonctionnelles, IRMf, ne montre pas de variation significative. Le petit nombre de repères, six points de contrôle, n'est pas suffisant pour produire les modifications des cartes statistiques. Cette thèse ouvre la voie à une nouvelle technique de recalage du cortex cérébral dont la direction principale est le recalage de plusieurs points représentant un sillon cérébral. Abstract : The fast development of new technologies such as digital medical imaging brought to the expansion of brain functional studies. One of the methodolgical key issue in brain functional studies is to compare neuronal activation between individuals. In this context, the great variability of brain size and shape is a major problem. Current methods allow inter-individual comparisions by means of normalisation of subjects' brains in relation to a standard brain. A largerly used standard brains are the proportional grid of Talairach and Tournoux and the Montreal Neurological Insititute standard brain (SPM99). However, there is a lack of more precise methods for the superposition of more variable portions of the cerebral cortex (e.g, neocrotex and perisyvlian zone) and in brain regions highly asymmetric between the two cerebral hemipsheres (e.g. planum termporale). The aim of this thesis is to evaluate a new image processing technique based on non-linear model-based registration. Contrary to the intensity-based, model-based registration uses spatial and not intensitiy information to fit one image to another. We extract identifiable anatomical features (point landmarks) in both deforming and target images and by their correspondence we determine the appropriate deformation in 3D. As landmarks, we use six control points that are situated: one on the Heschl'y Gyrus, one on the motor hand area, and one on the sylvian fissure, bilaterally. The evaluation of this model-based approach is performed on MRI and fMRI images of nine of eighteen subjects participating in the Maeder et al. study. Results on anatomical, i.e. MRI, images, show the mouvement of the deforming brain control points to the location of the reference brain control points. The distance of the deforming brain to the reference brain is smallest after the registration compared to the distance before the registration. Registration of functional images, i.e fMRI, doesn't show a significant variation. The small number of registration landmarks, i.e. six, is obvious not sufficient to produce significant modification on the fMRI statistical maps. This thesis opens the way to a new computation technique for cortex registration in which the main directions will be improvement of the registation algorithm, using not only one point as landmark, but many points, representing one particular sulcus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the literature on clinical signs such as imitation behavior, grasp reaction, manipulation of tools, utilization behavior, environmental dependency, hyperlexia, hypergraphia and echolalia. Some aspects of this semiology are of special interest because they refer to essential notions such as free-will and autonomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: We previously reported the results of a phase II study for patients with newly diagnosed primary CNS lymphoma (PCNSL) treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and responseadapted whole brain radiotherapy (WBRT). The purpose of this report is to update the initial results and provide long-term data regarding overall survival, prognostic factors, and the risk of treatment-related neurotoxicity.Methods: A long-term follow-up was conducted on surviving primary central nervous system lymphoma patients having been treated according to the ,,OSHO-53 study", which was initiated by the Ostdeutsche Studiengruppe Hamatologie-Onkologie. Between August 1999 and October 2004 twentythree patients with an average age of 55 and median Karnofsky performance score of 70% were enrolled and received high-dose mthotrexate (HD-MTX) on days 1 and 10. In case of at least a partial remission (PR), high-dose busulfan/ thiotepa (HD-BuTT) followed by aPBSCT was performed. Patients without response to induction or without complete remission (CR) after HD-BuTT received WBRT. All patients (n=8), who are alive in 2011, were contacted and Mini Mental State examination (MMSE) and the EORTC QLQ-C30 were performed.Results: Eight patients are still alive with a median follow-up of 116,9 months (79 - 141, range). One of them suffered from a late relapse eight and a half years after initial diagnosis of PCNSL, another one suffers from a gall bladder carcinoma. Both patients are alive, the one with the relapse of PCNSL has finished rescue therapy and is further observed, the one with gall baldder carcinoma is still under therapy. MMSE and QlQ-C30 showed impressive results in the patients, who were not irradiated. Only one of the irradiated patients is still alive with a clear neurologic deficit but acceptable quality of life.Conclusions: Long-term follow-up of our patients, who were included in the OSHO-53 study show an overall survival of 30 percent. If WBRT can be avoided no long-term neurotoxicity has been observed and the patients benefit from excellent Quality of Life. Induction chemotherapy with two cycles of HD-MTX should be intensified to improve the unsatisfactory OAS of 30 percent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). RESULTS: As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. CONCLUSIONS: We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that aggregate cultures prepared from fetal rat telencephalon and grown in a chemically defined medium offer a useful model to study developmental processes such as myelin synthesis. Since compact myelin is formed in these cultures, we investigated the possibility to use this culture system to study demyelinating mechanisms. In particular, we examined the effect of a monoclonal antibody (8-18C5) directed against the myelin/oligodendrocyte glycoprotein (MOG). We found that addition of anti-MOG antibodies and complement to aggregate cultures led to a highly significant decrease in myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) specific activity. These results indicate that, in our culture system, anti-MOG antibodies have a strong demyelinating effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain metastases occur in 20-50% of NSCLC and 50-80% of SCLC. In this review, we will look at evidence-based medicine data and give some perspectives on the management of BM. We will address the problems of multiple BM, single BM and prophylactic cranial irradiation. Recursive Partitioning Analysis (RPA) is a powerful prognostic tool to facilitate treatment decisions. Dealing with multiple BM, the use of corticosteroids was established more than 40 years ago by a unique randomized trial (RCT). Palliative effect is high (_80%) as well as side-effects. Whole brain radiotherapy (WBRT) was evaluated in many RCTs with a high (60-90%) response rate; several RT regimes are equivalent, but very high dose per fraction should be avoided. In multiple BM from SCLC, the effect of WBRT is comparable to that in NSCLC but chemotherapy (CXT) although advocated is probably less effective than RT. Single BM from NSCLC occurs in 30% of all BM cases; several prognostic classifications including RPA are very useful. Several options are available in single BM: WBRT, surgery (SX), radiosurgery (RS) or any combination of these. All were studied in RCTs and will be reviewed: the addition of WBRT to SX or RS gives a better neurological tumour control, has little or no impact on survival, and may be more toxic. However omitting WBRT after SX alone gives a higher risk of cerebro-spinal fluid dissemination. Prophylactic cranial irradiation (PCI) has a major role in SCLC. In limited disease, meta-analyses have shown a positive impact of PCI in the decrease of brain relapse and in survival improvement, especially for patients in complete remission. Surprisingly, this has been recently confirmed also in extensive disease. Experience with PCI for NSCLC is still limited, but RCT suggest a reduction of BM with no impact on survival. Toxicity of PCI is a matter of debate, as neurological or neuro-cognitive impairment is already present prior to PCI in almost half of patients. However RT toxicity is probably related to total dose and dose per fraction. Perspectives : Future research should concentrate on : 1) combined modalities in multiple BM. 2) Exploration of treatments in oligo-metastases. 3) Further exploration of PCI in NSCLC. 4) Exploration of new, toxicity-sparing radiotherapy techniques (IMRT, Tomotherapy etc).