58 resultados para TOOTH, DECIDUOUS
Resumo:
BACKGROUND: Occupational risks, the present nuclear threat, and the potential danger associated with nuclear power have raised concerns regarding the metabolism of plutonium in pregnant women. OBJECTIVE: We measured plutonium levels in the milk teeth of children born between 1951 and 1995 to assess the potential risk that plutonium incorporated by pregnant women might pose to the radiosensitive tissues of the fetus through placenta transfer. METHODS: We used milk teeth, whose enamel is formed during pregnancy, to investigate the transfer of plutonium from the mother's blood plasma to the fetus. We measured plutonium using sensitive sector field inductively coupled plasma mass spectrometry techniques. We compared our results with those of a previous study on strontium-90 ((90)Sr) released into the atmosphere after nuclear bomb tests. RESULTS: Results show that plutonium activity peaks in the milk teeth of children born about 10 years before the highest recorded levels of plutonium fallout. By contrast, (90)Sr, which is known to cross the placenta barrier, manifests differently in milk teeth, in accordance with (90)Sr fallout deposition as a function of time. CONCLUSIONS: These findings demonstrate that plutonium found in milk teeth is caused by fallout that was inhaled around the time the milk teeth were shed and not from any accumulation during pregnancy through placenta transfer. Thus, plutonium may not represent a radiologic risk for the radiosensitive tissues of the fetus.
Resumo:
Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transgenic mouse expressing either a mutated (R94Q) or wild-type form of human mitofusin 2 in neurons to evaluate whether the R94Q mutation was sufficient for inducing a Charcot-Marie-Tooth disease type 2A phenotype. Only mice expressing mitofusin 2(R94Q) developed locomotor impairments and gait defects thus mimicking the Charcot-Marie-Tooth disease type 2A neuropathy. In these animals, the number of mitochondria per axon was significantly increased in the distal part of the sciatic nerve axons with a diameter smaller than 3.5 microm. Importantly, the analysis of R94Q transgenic animals also revealed an age-related shift in the size of myelinated axons leading to an over-representation of axons smaller than 3.5 microm. Together these data suggest a link between an increased number of mitochondria in axons and a shift in axonal size distribution in mitofusin 2(R94Q) transgenic animals that may contribute to their neurological phenotype.
Resumo:
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Resumo:
Mutations of the Ectodysplasin-A (EDA) gene are generally associated with the syndrome hypohidrotic ectodermal dysplasia (MIM 305100), but they can also manifest as selective, non-syndromic tooth agenesis (MIM300606). We have performed an in vitro functional analysis of six selective tooth agenesis-causing EDA mutations (one novel and five known) that are located in the C-terminal tumor necrosis factor homology domain of the protein. Our study reveals that expression, receptor binding or signaling capability of the mutant EDA1 proteins is only impaired in contrast to syndrome-causing mutations, which we have previously shown to abolish EDA1 expression, receptor binding or signaling. Our results support a model in which the development of the human dentition, especially of anterior teeth, requires the highest level of EDA-receptor signaling, whereas other ectodermal appendages, including posterior teeth, have less stringent requirements and form normally in response to EDA mutations with reduced activity.
Resumo:
STATEMENT OF PROBLEM: Wear of methacrylate artificial teeth resulting in vertical loss is a problem for both dentists and patients. PURPOSE: The purpose of this study was to quantify wear of artificial teeth in vivo and to relate it to subject and tooth variables. MATERIAL AND METHODS: Twenty-eight subjects treated with complete dentures received 2 artificial tooth materials (polymethyl methacrylate (PMMA)/double-cross linked PMMA fillers; 35%/59% (SR Antaris DCL, SR Postaris DCL); experimental 48%/46%). At baseline and after 12 months, impressions of the dentures were poured with improved stone. After laser scanning, the casts were superimposed and matched. Maximal vertical loss (mm) and volumetric loss (mm(3)) were calculated for each tooth and log-transformed to reduce variability. Volumetric loss was related to the occlusally active surface area. Linear mixed models were used to study the influence of the factors jaw, tooth, and material on adjusted (residual) wear values (alpha=.05). RESULTS: Due to drop outs (n=5) and unmatchable casts (n=3), 69% of all teeth were analyzed. Volumetric loss had a strong linear relationship to surface area (P<.001); this was less pronounced for vertical loss (P=.004). The factor showing the highest influence was the subject. Wear was tooth dependent (increasing from incisors to molars). However, these differences diminished once the wear rates were adjusted for occlusal area, and only a few remained significant (anterior versus posterior maxillary teeth). Another influencing factor was the age of the subject. CONCLUSIONS: Clinical wear of artificial teeth is higher than previously measured or expected. The presented method of analyzing wear of artificial teeth using a laser-scanning device seemed suitable.
Resumo:
Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
The case of a 2-month-old healthy infant without relevant medical history. The patient was referred due to the aggravation of a swelling occupying the left half of the anterior maxilla. This lesion became visible approximately one month ago; it involved the buccal gingiva and alveolar bone, including the deciduous tooth germs 6.1 and 6.2. The swelling had dimensions of 20 mm x 20 mm. The surgical excision was performed under general anesthesia. The tooth buds of 6.1 and 6.2 were closely related to the tumour and so were removed. The lesion was entirely enucleated. The pathology of the lesion confirmed a melanotic neuroectodermal tumour of infancy. The melanotic neuroectodermal tumour of infancy (MNTI) has been described as a rare benign pigmented painless swelling that usually occurs in the anterior region of the maxilla and in the incisor region. The histological examination showed small basophilic cells, many containing melanin pigmentation within the cytoplasm, with a second population of larger cubical cells with abundant cytoplasm, arranged in alveolar or adenoid clusters. According to Krompecher this tumour derives from epithelial nests evolved at the time of embryonic fusion of the facial processes. It has also been suggested that the tumour arises from the retinal anlage by a pinching-off process of neuroepithelium during the formation of embryonic eye. More recently, the presence of high levels of vanillylmandelic acid suggest a neural origin of the tumour.
PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease.
Resumo:
Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.
Resumo:
Certain typical gait characteristics such as foot-drop and foot supination are well described in Charcot-Marie-Tooth disease. These are directly related to the primary disease and due to the weakness of ankle dorsiflexors and everters characteristic of this hereditary neuropathy. We analysed 16 subjects aged 8-52 years old (11 with type I, 5 with type II Charcot-Marie-Tooth disease) using three-dimensional gait analysis and identified kinematic features previously unreported. These patients showed a combination of tight tendo achillei, foot-drop, failure of plantar flexion and increased foot supination, but also presented with excessive internal rotation of the knee and/or tibia, knee hyperextension in stance, excessive external rotation at the hips and decreased hip adduction in stance (typical of a broad based gait). These proximal features could have been an adaptation to or consequence of the disrupted ankle and foot biomechanics, however a direct relation to the neuropathy is also possible since sub-normal muscle power was observed at the proximal levels in most subjects on both manual testing and kinetic analysis. Gait analysis is a useful tool in defining the characteristic gait of patients with Charcot-Marie-Tooth disease.
Resumo:
BACKGROUND: Dietary fluoride supplements were first introduced to provide systemic fluoride in areas where water fluoridation is not available. Since 1990, the use of fluoride supplements in caries prevention has been re-evaluated in several countries. OBJECTIVES: To evaluate the efficacy of fluoride supplements for preventing dental caries in children. SEARCH METHODS: We searched the Cochrane Oral Health Group's Trials Register (to 12 October 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 3), MEDLINE via OVID (1950 to 12 October 2011), EMBASE via OVID (1980 to 12 October 2011), WHOLIS/PAHO/MEDCARIB/LILACS/BBO via BIREME (1982 to 12 October 2011), and Current Controlled Trials (to 12 October 2011). We handsearched reference lists of articles and contacted selected authors. SELECTION CRITERIA: We included randomised or quasi-randomised controlled trials comparing, with minimum follow-up of 2 years, fluoride supplements (tablets, drops, lozenges) with no fluoride supplement or with other preventive measures such as topical fluorides in children less than 16 years of age at the start. The main outcome was caries increment measured by the change in decayed, missing and filled tooth surfaces (DMFS). DATA COLLECTION AND ANALYSIS: Two review authors, independently and in duplicate, assessed the eligibility of studies for inclusion, and carried out risk of bias assessment and data extraction. In the event of disagreement, we sought consensus and consulted a third review author. We contacted trial authors for missing information. We used the prevented fraction (PF) as a metric for evaluating the efficacy of the intervention. The PF is defined as the mean caries increment in controls minus mean caries increment in the treated group divided by mean caries increment in controls. We conducted random-effects meta-analyses when data could be pooled. We assessed heterogeneity in the results of the studies by examining forest plots and by using formal tests for homogeneity. We recorded adverse effects (fluorosis) when the studies provided relevant data. MAIN RESULTS: We included 11 studies in the review involving 7196 children.In permanent teeth, when fluoride supplements were compared with no fluoride supplement (three studies), the use of fluoride supplements was associated with a 24% (95% confidence interval (CI) 16 to 33%) reduction in decayed, missing and filled surfaces (D(M)FS). The effect of fluoride supplements was unclear on deciduous or primary teeth. In one study, no caries-inhibiting effect was observed on deciduous teeth while in another study, the use of fluoride supplements was associated with a substantial reduction in caries increment.When fluoride supplements were compared with topical fluorides or with other preventive measures, there was no differential effect on permanent or deciduous teeth.The review found limited information on the adverse effects associated with the use of fluoride supplements. AUTHORS' CONCLUSIONS: This review suggests that the use of fluoride supplements is associated with a reduction in caries increment when compared with no fluoride supplement in permanent teeth. The effect of fluoride supplements was unclear on deciduous teeth. When compared with the administration of topical fluorides, no differential effect was observed. We rated 10 trials as being at unclear risk of bias and one at high risk of bias, and therefore the trials provide weak evidence about the efficacy of fluoride supplements.
Resumo:
tabby and downless mutant mice have apparently identical defects in teeth, hair and sweat glands. Recently, genes responsible for these spontaneous mutations have been identified. downless (Dl) encodes Edar, a novel member of the tumour necrosis factor (TNF) receptor family, containing the characteristic extracellular cysteine rich fold, a single transmembrane region and a death homology domain close to the C terminus. tabby (Ta) encodes ectodysplasin-A (Eda) a type II membrane protein of the TNF ligand family containing an internal collagen-like domain. As predicted by the similarity in adult mutant phenotype and the structure of the proteins, we demonstrate that Eda and Edar specifically interact in vitro. We have compared the expression pattern of Dl and Ta in mouse development, taking the tooth as our model system, and find that they are not expressed in adjacent cells as would have been expected. Teeth develop by a well recorded series of epithelial-mesenchymal interactions, similar to those in hair follicle and sweat gland development, the structures found to be defective in tabby and downless mice. We have analysed the downless mutant teeth in detail, and have traced the defect in cusp morphology back to initial defects in the structure of the tooth enamel knot at E13. Significantly, the defect is distinct from that of the tabby mutant. In the tabby mutant, there is a recognisable but small enamel knot, whereas in the downless mutant the knot is absent, but enamel knot cells are organised into a different shape, the enamel rope, showing altered expression of signalling factors (Shh, Fgf4, Bmp4 and Wnt10b). By adding a soluble form of Edar to tooth germs, we were able to mimic the tabby enamel knot phenotype, demonstrating the involvement of endogenous Eda in tooth development. We could not, however, reproduce the downless phenotype, suggesting the existence of yet another ligand or receptor, or of ligand-independent activation mechanisms for Edar. Changes in the structure of the enamel knot signalling centre in downless tooth germs provide functional data directly linking the enamel knot with tooth cusp morphogenesis. We also show that the Lef1 pathway, thought to be involved in these mutants, functions independently in a parallel pathway.
Resumo:
Fossil bones and teeth of Late Pleistocene terrestrial mammals from Rhine River gravels (RS) and the North Sea (NS), that have been exposed to chemically and isotopically distinct diagenetic fluids (fresh water versus seawater), were investigated to study the effects of early diagenesis on biogenic apatite. Changes in phosphate oxygen isotopic composition (delta O-18(PO4)), nitrogen content (wt.% N) and rare earth element (REE) concentrations were measured along profiles within bones that have not been completely fossilized, and in skeletal tissues (bone, dentine, enamel) with different susceptibilities to diagenetic alteration. Early diagenetic changes of elemental and isotopic compositions of apatite in fossil bone are related to the loss of the stabilizing collagen matrix. The REE concentration is negatively correlated with the nitrogen content, and therefore the amount of collagen provides a sensitive proxy for early diagenetic alteration. REE patterns of RS and NS bones indicate initial fossilization in a fresh water fluid with similar REE compositions. Bones from both settings have nearly collagen-free, REE-, U-, F- and Sr-enriched altered outer rims, while the collagen-bearing bone compacta in the central part often display early diagenetic pyrite void-fillings. However, NS bones exposed to Holocene seawater have outer rim delta O-18(PO4) values that are 1.1 to 2.6 parts per thousand higher compared to the central part of the same bones (delta O-18(PO4) = 18.2 +/- 0.9 parts per thousand, n = 19). Surprisingly, even the collagen-rich bone compacta with low REE contents and apatite crystallinity seems altered, as NS tooth enamel (delta O-18(PO4) =15.0 +/- 0.3 parts per thousand, n=4) has about 3%. lower delta O-18(PO4) values, values that are also similar to those of enamel from RS teeth. Therefore, REE concentration, N content and apatite crystallinity are in this case only poor proxies for the alteration of delta O-18(PO4) values. Seawater exposure of a few years up to 8 kyr can change the delta O-18(PO4) values of the bone apatite by > 3 parts per thousand. Therefore, bones fossilized in marine settings must be treated with caution for palaeoclimatic reconstructions. However, enamel seems to preserve pristine delta O-18(PO4) values on this time scale. Using species-specific calibrations for modern mammals, a mean delta O-18(H2O) value can be reconstructed for Late Pleistocene mammalian drinking water of around -9.2 +/- 0.5 parts per thousand, which is similar to that of Late Pleistocene groundwater from central Europe. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.