171 resultados para SALT TRANSPORT
Resumo:
Determining groundwater flow paths of infiltrated river water is necessary for studying biochemical processes in the riparian zone, but their characterization is complicated by strong temporal and spatial heterogeneity. We investigated to what extent repeat 3D surface electrical resistance tomography (ERT) can be used to monitor transport of a salt-tracer plume under close to natural gradient conditions. The aim is to estimate groundwater flow velocities and pathways at a site located within a riparian groundwater system adjacent to the perialpine Thur River in northeastern Switzerland. Our ERT time-lapse images provide constraints on the plume's shape, flow direction, and velocity. These images allow the movement of the plume to be followed for 35 m. Although the hydraulic gradient is only 1.43 parts per thousand, the ERT time-lapse images demonstrate that the plume's center of mass and its front propagate with velocities of 2x10(-4) m/s and 5x10(-4) m/s, respectively. These velocities are compatible with groundwater resistivity monitoring data in two observation wells 5 m from the injection well. Five additional sensors in the 5-30 m distance range did not detect the plume. Comparison of the ERT time-lapse images with a groundwater transport model and time-lapse inversions of synthetic ERT data indicate that the movement of the plume can be described for the first 6 h after injection by a uniform transport model. Subsurface heterogeneity causes a change of the plume's direction and velocity at later times. Our results demonstrate the effectiveness of using time-lapse 3D surface ERT to monitor flow pathways in a challenging perialpine environment over larger scales than is practically possible with crosshole 3D ERT.
Resumo:
The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.
Resumo:
The permeability-glycoprotein efflux-transporter encoded by the multidrug resistance 1 (ABCB1) gene and the cytochromes P450 3A4/5 encoded by the CYP3A4/5 genes are known to interact in the transport and metabolism of many drugs. Recent data have shown that the CYP3A5 genotypes influence blood pressure and that permeability-glycoprotein activity might influence the activity of the renin-angiotensin system. Hence, these 2 genes may contribute to blood pressure regulation in humans. We analyzed the association of variants of the ABCB1 and CYP3A5 genes with ambulatory blood pressure, plasma renin activity, plasma aldosterone, endogenous lithium clearance, and blood pressure response to treatment in 72 families (373 individuals; 55% women; mean age: 46 years) of East African descent. The ABCB1 and CYP3A5 genes interact with urinary sodium excretion in their effect on ambulatory blood pressure (daytime systolic: P=0.05; nighttime systolic and diastolic: P<0.01), suggesting a gene-gene-environment interaction. The combined action of these genes is also associated with postproximal tubular sodium reabsorption, plasma renin activity, plasma aldosterone, and with an altered blood pressure response to the angiotensin-converting enzyme inhibitor lisinopril (P<0.05). This is the first reported association of the ABCB1 gene with blood pressure in humans and demonstration that genes encoding for proteins metabolizing and transporting drugs and endogenous substrates contribute to blood pressure regulation.
Resumo:
The mechanisms through which aldosterone promotes apparently opposite effects like salt reabsorption and K(+) secretion remain poorly understood. The identification, localization, and physiological analysis of ion transport systems in distal nephron have revealed an intricate network of interactions between several players, revealing the complex mechanism behind the aldosterone paradox. We review the mechanisms involved in differential regulation of ion transport that allow the fine tuning of salt and K(+) balance.
Resumo:
The highly amiloride-sensitive epithelial sodium channel (ENaC) is an apical membrane constituent of cells of many salt-absorbing epithelia. In the kidney, the functional relevance of ENaC expression has been well established. ENaC mediates the aldosterone-dependent sodium reabsorption in the distal nephron and is involved in the regulation of blood pressure. Mutations in genes encoding ENaC subunits are causative for two human inherited diseases: Liddle's syndrome, a severe form of hypertension associated with ENaC hyperfunction, and pseudohypoaldosteronism (PHA-1), a salt-wasting syndrome caused by decreased ENaC function. Transgenic mouse technologies provide a useful tool to study the role of ENaC in vivo. Different mouse lines have been established in which each of the ENaC subunits was affected. The phenotypes observed in these mice demonstrated that each subunit is essential for survival and for regulation of sodium transport in kidney and colon. Moreover, the alpha subunit plays a specific role in the control of fluid absorption in the airways at birth. Such mice can now be used to study the role of ENaC in various organs and can serve as models to understand the pathophysiology of these human diseases.
Resumo:
Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.
Resumo:
The lung possesses specific transport systems that intra- and extracellularly maintain salt and fluid balance necessary for its function. At birth, the lungs rapidly transform into a fluid (Na(+))-absorbing organ to enable efficient gas exchange. Alveolar fluid clearance, which mainly depends on sodium transport in alveolar epithelial cells, is an important mechanism by which excess water in the alveoli is reabsorbed during the resolution of pulmonary edema. In this review, we will focus and summarize on the role of ENaC in alveolar lung liquid clearance and discuss recent data from mouse models with altered activity of epithelial sodium channel function in the lung, and more specifically in alveolar fluid clearance. Recent data studying mice with hyperactivity of ENaC or mice with reduced ENaC activity clearly illustrate the impaired lung fluid clearance in these adult mice. Further understanding of the physiological role of ENaC and its regulatory proteins implicated in salt and water balance in the alveolar cells may therefore help to develop new therapeutic strategies to improve gas exchange in pulmonary edema.
Resumo:
SUMMARY Regulation of sodium excretion by the kidney is a key mechanism in the long term regulation of blood pressure, and when altered it constitutes a risk factor for the appearance of arterial hypertension. Aldosterone, which secretion depends upon salt intake in the diet, is a steroid hormone that regulates sodium reabsorption in the distal part of the nephron (functional unit of the kidney) by modulating gene transcription. It has been shown that it can act synergistically with the peptidic hormone insulin through the interaction of their signalisation pathways. Our work consisted of two distinct parts: 1) the in vitro and in vivo characterisation of Glucocorticoid-Induced Leucine Zipper (GILZ) (an aldosterone-induced gene) mechanism of action; 2) the in vitro characterisation of insulin mechanism of action and its interaction with aldosterone. GILZ mRNA, coded by the TSC22D3 gene, is strongly induced by aldosterone in the cell line of principal cells of the cortical collecting duct (CCD) mpkCCDc14, suggesting that GILZ is a mediator of aldosterone response. Co-expression of GILZ and the amiloride-sensitive epithelial sodium channel ENaC in vitro in the Xenopus oocyte expression system showed that GILZ has no direct effect on the ENaC-mediated Na+ current in basal conditions. To define the role of GILZ in the kidney and in other organs (colon, heart, skin, etc.), a conditional knock-out mouse is being produced and will allow the in vivo study of its role. Previous data showed that insulin induced a transepithelial sodium transport at supraphysiological concentrations. Insulin and the insulin-like growth factor 1 (IGF-1) are able to bind to each other receptor with an affinity 50 to 100 times lower than to their cognate receptor. Our starting hypothesis was that the insulin effect observed at these supraphysiological concentrations is actually mediated by the IGF receptor type 1 (IGF-1R). In a new cell line that presents all the characteristics of the principal cells of the CCD (mCCDc11) we have shown that both insulin and IGF-1 induce a physiologically significant increase of Na+ transport through the activation of IGF-1R. Aldosterone and insulin/IGF-1 have an additive effect on Na+ transport, through the activation of the PI3-kinase (PI3-K) pathway and the phosphorylation of the serum- and glucocorticoid-induced kinase 1 (Sgk1) by the IGF-1R, and the induction of Sgk1 expression by aldosterone. Thus, Sgk1 integrates IGF-1/insulin and aldosterone effects. We suggest that IGF-1 is physiologically relevant in the modulation of sodium balance, while insulin can only regulate Na+ transport at supraphysiological conditions. Both hormones would bind to the IGF-1R and induce Na+ transport by activating the PI3-K PDK1/2 - Sgk1 pathway. We have shown for the first time that Sgk1 is expressed and phosphorylated in principal cells of the CCD in basal conditions, although the mechanism that maintains Sgk1 phosphorylation is not known. This new role for IGF-1 suggests that it could be a salt susceptibility gene. In effect, IGF-1 stimulates Na+ and water transport in the kidney in vivo. Moreover, 35 % of the acromegalic patients (overproduction of growth hormone and IGF-1) are hypertensives (higher proportion than in normal population), and genetic analysis suggest a link between the IGF-1 gene locus and blood pressure. RÉSUMÉ La régulation de l'excrétion rénale de sodium (Na+) joue un rôle principal dans le contrôle à long terme de la pression sanguine, et ses altérations constituent un facteur de risque de l'apparition d'une hypertension artérielle. L'aldosterone, dont la sécrétion dépend de l'apport en sel dans la diète, est une hormone stéroïdienne qui régule la réabsorption de Na+ dans la partie distale du nephron (unité fonctionnelle du rein) en contrôlant la transcription de gènes. Elle peut agir de façon synergistique avec l'hormone peptidique insuline, probablement via l'interaction de leurs voies de signalisation cellulaire. Le but de notre travail comportait deux volets: 1) caractériser in vitro et in vivo le mécanisme d'action du Glucocorticoid Induced Leucine Zipper (GILZ) (un gène induit par l'aldosterone); 2) caractériser in vitro le mécanisme d'action de l'insuline et son interaction avec l'aldosterone. L'ARNm de GILZ, codé par le gène TSC22D3, est induit par l'aldosterone dans la lignée cellulaire de cellules principales du tubule collecteur cortical (CCD) mpkCCDc14, suggérant que GILZ est un médiateur potentiel de la réponse à l'aldosterone. La co-expression in vitro de GILZ et du canal à Na+ sensible à l'amiloride ENaC dans le système d'expression de l'oocyte de Xénope a montré que GILZ n'a pas d'effet sur les courants sodiques véhiculées par ENaC en conditions basales. Une souris knock-out conditionnelle de GILZ est en train d'être produite et permettra l'étude in vivo de son rôle dans le rein et d'autres organes. Des expériences préliminaires ont montré que l'insuline induit un transport transépithelial de Na+ à des concentrations supraphysiologiques. L'insuline et l'insulin-like growth factor 1 (IGF-1) peuvent se lier à leurs récepteurs réciproques avec une affinité 50 à 100 fois moindre qu'à leur propre récepteur. Nous avons donc proposé que l'effet de l'insuline soit médié par le récepteur à l'IGF type 1 (IGF-1R). Dans une nouvelle lignée cellulaire qui présente toutes les caractéristiques des cellules principales du CCD (mCCDc11) nous avons montré que les deux hormones induisent une augmentation physiologiquement significative du transport du Na+ par l'activation des IGF-1 R. Aldosterone et insuline/IGF-1 ont un effet additif sur le transport de Na+, via l'activation de la voie de la PI3-kinase et la phosphorylation de la serum- and glucocorticoid-induced kinase 1 (Sgk1) par l'IGF-1R, dont l'expression est induite par l'aldosterone. Sgk1 intègre les effets de l'insuline et l'aldosterone. Nous proposons que l'IGF-1 joue un rôle dans la modulation physiologique de la balance sodique, tandis que l'insuline régule le transport de Na+ à des concentrations supraphysiologiques. Les deux hormones agissent en se liant à l'IGF-1R et induisent le transport de Na+ en activant la cascade de signalisation PI3-K - PDK1/2 - Sgk1. Nous avons montré pour la première fois que Sgk1 est exprimée et phosphorylée dans des conditions basales dans les cellules principales du CCD, mais le mécanisme qui maintient sa phosphorylation n'est pas connu. Ce nouveau rôle pour l'IGF-1 suggère qu'il pourrait être un gène impliqué de susceptibilité au sel. Aussi, l'IGF-1 stimule le transport rénal de Na+ in vivo. De plus, 35 % des patients atteints d'acromégalie (surproduction d'hormone de croissance et d'IGF-1) sont hypertensifs (prévalence plus élevée que la population normale), et des analyses génétiques suggèrent un lien entre le locus du gène de l'IGF-1 et la pression sanguine. RÉSUMÉ GRAND PUBLIC Nos ancêtres se sont génétiquement adaptés pendant des centaines de millénaires à un environnement pauvre en sel (chlorure de sodium) dans la savane équatoriale, où ils consommaient moins de 0,1 gramme de sel par jour. On a commencé à ajouter du sel aux aliments avec l'apparition de l'agriculture (il y a 5000 à 10000 années), et aujourd'hui une diète omnivore, qui inclut des plats préparés, contient plusieurs fois la quantité de sodium nécessaire pour notre fonction physiologique normale (environ 10 grammes par jour). Le corps garde sa concentration constante dans le sang en s'adaptant à une consommation très variable de sel. Pour ceci, il module son excrétion soit directement, soit en sécrétant des hormones régulatrices. Le rein joue un rôle principal dans cette régulation puisque l'excrétion urinaire de sel change selon la diète et peut aller d'une quantité dérisoire à plus de 36 grammes par jour. L'attention qu'on prête au sel est liée à sa relation avec l'hypertension essentielle. Ainsi, le contrôle rénal de l'excrétion de sodium et d'eau est le principal mécanisme dans la régulation de la pression sanguine, et une ingestion excessive de sel pourrait être l'un des facteurs-clé déclenchant l'apparition d'un phénotype hypertensif. L'hormone aldosterone diminue l'excrétion de sodium par le rein en modulant l'expression de gènes qui pourraient être impliqués dans la sensibilité au sel. Dans une lignée cellulaire de rein l'expression du gène TSC22D3, qui se traduit en la protéine Glucocorticoid Induced Leucine Zipper (GILZ), est fortement induite par l'aldosterone. Ceci suggère que GILZ est un médiateur potentiel de l'effet de l'aldosterone, et pourrait être impliqué dans la sensibilité au sel. Pour analyser la fonction de GILZ dans le rein plusieurs approches ont été utilisées. Par exemple, une souris dans laquelle GILZ est spécifiquement inactivé dans le rein est en train d'être produite et permettra l'étude du rôle de GILZ dans l'organisme. De plus, on a montré que GILZ, en conditions basales, n'a pas d'effet direct sur la protéine transportant le sodium à travers la membrane des cellules, le canal sodique épithélial ENaC. On a aussi essayé de trouver des protéines qui interagissent directement avec GILZ utilisant une technique appelée du « double-hybride dans la levure », mais aucun candidat n'a émergé. Des études ont montré que, à de hautes concentrations, l'insuline peut aussi diminuer l'excrétion de sodium. A ces concentrations, elle peut activer son récepteur spécifique, mais aussi le récepteur d'une autre hormone, l'Insulin-Like Growth Factor 1 (IGF-1). En plus, l'infusion d'IGF-1 augmente la rétention rénale de sodium et d'eau, et des mutations du gène codant pour l'IGF-1 sont liées aux différents niveaux de pression sanguine. On a utilisé une nouvelle lignée cellulaire de rein développée dans notre laboratoire, appelée mCCDc11, pour analyser l'importance relative des deux hormones dans l'induction du transport de sodium. On a montré que les deux hormones induisent une augmentation significative du transport de sodium par l'activation de récepteurs à l'IGF-1 et non du récepteur à l'insuline. On a montré qu'à l'intérieur de la cellule leur activation induit une augmentation du transport sodique par le biais du canal ENaC en modifiant la quantité de phosphates fixés sur la protéine Serumand Glucocorticoid-induced Kinase 1 (Sgk1). On a finalement montré que l'IGF-1 et l'aldosterone ont un effet additif sur le transport de sodium en agissant toutes les deux sur Sgk1, qui intègre leurs effets dans le contrôle du transport de sodium dans le rein.
Resumo:
Despite large changes in salt intake, the mammalian kidney is able to maintain the extracellular sodium concentration and osmolarity within very narrow margins, thereby controlling blood volume and blood pressure. In the aldosterone-sensitive distal nephron (ASDN), aldosterone tightly controls the activities of epithelial sodium channel (ENaC) and Na,K-ATPase, the two limiting factors in establishing transepithelial sodium transport. It has been proposed that the ENaC/degenerin gene family is restricted to Metazoans, whereas the α- and β-subunits of Na,K-ATPase have homologous genes in prokaryotes. This raises the question of the emergence of osmolarity control. By exploring recent genomic data of diverse organisms, we found that: 1) ENaC/degenerin exists in all of the Metazoans screened, including nonbilaterians and, by extension, was already present in ancestors of Metazoa; 2) ENaC/degenerin is also present in Naegleria gruberi, an eukaryotic microbe, consistent with either a vertical inheritance from the last common ancestor of Eukaryotes or a lateral transfer between Naegleria and Metazoan ancestors; and 3) The Na,K-ATPase β-subunit is restricted to Holozoa, the taxon that includes animals and their closest single-cell relatives. Since the β-subunit of Na,K-ATPase plays a key role in targeting the α-subunit to the plasma membrane and has an additional function in the formation of cell junctions, we propose that the emergence of Na,K-ATPase, together with ENaC/degenerin, is linked to the development of multicellularity in the Metazoan kingdom. The establishment of multicellularity and the associated extracellular compartment ("internal milieu") precedes the emergence of other key elements of the aldosterone signaling pathway.
Resumo:
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Resumo:
The tubular transport of [3H]methotrexate was studied in isolated nonperfused and perfused superficial proximal tubular segments of rabbit kidneys. Reabsorption represented only 5% of perfused methotrexate, and appeared to be mostly of passive nature inasmuch as it was not modified by reducing the temperature or by ouabain. Cellular accumulation in nonperfused segments and secretion in perfused tubules were highest in the S2 segment and lower in the S3 and S1 segments. Secretion against a bath-to-lumen concentration gradient was observed only in S2 segments (with a maximum methotrexate secretory rate of 478 +/- 48 fmol/mm.min and an apparent Km of transport of 363 +/- 32 microM), and was inhibited by probenecid and folate. The low capacity for methotrexate secretion may be explained by a low capacity of transport across the basolateral membrane of the proximal cell as methotrexate was accumulated only to a low extent in nonperfused tubules (tissue water to medium concentration ratio of 8.2 +/- 1 in S2 segments). During secretion a small amount of methotrexate was metabolized; the nature of the metabolite(s) remains to be defined.
Resumo:
In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.
Resumo:
Environmental research in earth sciences is focused on the geosphere, i.e. (1) waters and sediments of rivers, lakes and oceans, and (2) soils and underlying shallow rock formations,both water-unsaturated and -saturated. The subsurface is studied down to greater depths at sites where waste repositories or tunnels are planned and mining activities exist. In recent years, earth scientists have become more and more involved in pollution problems related to their classical field of interest, e.g. groundwater, ore deposits, or petroleum and non-metal natural deposits (gravel, clay, cement precursors). Major pollutants include chemical substances, radioactive isotopes and microorganisms. Mechanisms which govern the transport of pollutants are of physical, chemical (dissolution, precipitation, adsorption), or microbiological (transformation) nature. Land-use planning must reflect a sustainable development and sound scientific criteria. Today's environmental pollution requires working teams with an interdisciplinary background in earth sciences, hydrology, chemistry, biology, physics as well as engineering. This symposium brought together for the first time in Switzerland earth and soil scientists, physicists and chemists, to present and discuss environmental issues concerning the geosphere.
Resumo:
We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.
Resumo:
The blue light photoreceptors phototropins (phot1 and phot2 in Arabidopsis thaliana (L.)) carry out various light responses of great adaptive value that optimize plant growth. These processes include phototropism (the bending of an organ induced by unequal light distribution), chloroplast movements, stomatal opening, leaf flattening and solar tracking. The biochemical pathways controlling these important blue light responses are just starting to be elucidated. The PHYTOCHROME KINASE SUBSTRATE (PKS1-4) proteins - the subject of this research - have recently been identified as novel phototropism signalling components. PKS1 (the founding member of this family) interacts in a same complex in vivo with phot1 and the important phot1 signalling element NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3). This suggested that the PKS may act as early components of phot signalling. This work further investigates the role of this protein family during phototropin signalling Genetic experiments clearly showed that the PKS do not control chloroplast movements or stomatal opening. However, PKS2 plays a critical role with NPH3 during leaf flattening and solar tracking. Epistasis data indicated that both proteins act in phot1 and phot2 pathways, which is consistent with their in vivo interaction with both phototropins. Because phototropism, leaf flattening and solar tracking are developmental processes regulated by the hormone auxin, the role of PKS2 and NPH3 during auxin homeostasis was also investigated. Interestingly, PKS2 loss-of-function restores leaf flattening in the auxin transporter mutant aux1. Moreover, PKS2 and NPH3 are found in a same complex with AUX1 in vivo. Taken together, these results suggest that PKS2 may act with NPH3 as a connecting point between phot signalling and auxin transport. Further experiments were performed to explore the molecular mode of action of PKS2 and NPH3 in this process. The significance of these results is discussed.