90 resultados para S100 family, circular dichroism (CD)
Resumo:
Remorins form a superfamily of plant-specific plasma membrane/lipid-raft-associated proteins of unknown structure and function. Using specific antibodies, we localized tomato remorin 1 to apical tissues, leaf primordia and vascular traces. The deduced remorin protein sequence contains a predicted coiled coil-domain, suggesting its participation in protein-protein interactions. Circular dichroism revealed that recombinant potato remorin contains an alpha-helical region that forms a functional coiled-coil domain. Electron microscopy of purified preparations of four different recombinant remorins, one from potato, two divergent isologs from tomato, and one from Arabidopsis thaliana , demonstrated that the proteins form highly similar filamentous structures. The diameters of the negatively-stained filaments ranged from 4.6-7.4 nm for potato remorin 1, 4.3-6.2 nm for tomato remorin 1, 5.7-7.5 nm for tomato remorin 2, and 5.7-8.0 nm for Arabidopsis Dbp. Highly polymerized remorin 1 was detected in glutaraldehyde-crosslinked tomato plasma membrane preparations and a population of the protein was immunolocalized in tomato root tips to structures associated with discrete regions of the plasma membrane.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.
Resumo:
Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.
Resumo:
The 20 amino acid residue peptides derived from RecA loop L2 have been shown to be the pairing domain of RecA. The peptides bind to ss- and dsDNA, unstack ssDNA, and pair the ssDNA to its homologous target in a duplex DNA. As shown by circular dichroism, upon binding to DNA the disordered peptides adopt a beta-structure conformation. Here we show that the conformational change of the peptide from random coil to beta-structure is important in binding ss- and dsDNA. The beta-structure in the DNA pairing peptides can be induced by many environmental conditions such as high pH, high concentration, and non-micellar sodium dodecyl sulfate (6 mM). This behavior indicates an intrinsic property of these peptides to form a beta-structure. A beta-structure model for the loop L2 of RecA protein when bound to DNA is thus proposed. The fact that aromatic residues at the central position 203 strongly modulate the peptide binding to DNA and subsequent biochemical activities can be accounted for by the direct effect of the aromatic amino acids on the peptide conformational change. The DNA-pairing domain of RecA visualized by electron microscopy self-assembles into a filamentous structure like RecA. The relevance of such a peptide filamentous structure to the structure of RecA when bound to DNA is discussed.
Resumo:
Platelet adhesion, the initial step of platelet activation, is mediated by the interaction of von Willebrand factor (VWF) with its platelet receptor, the GPIb-IX complex. The binding of VWF to GPIb-IX is induced either by increased shear stress or by exogenous modulators, such as botrocetin. At a molecular level, this interaction takes place between the A1 domain of VWF and the GPIb alpha chain of the GPIb-IX complex. We report here the design and functional characteristics of a VWF template-assembled synthetic protein (TASP), a chimeric four-helix-bundle TASP scaffold mimicking the surface of the A1 domain. Twelve residues located on helices alpha 3 and alpha 4 in the native A1 domain were grafted onto a surface formed by two neighboring helices of the TASP. VWF TASP was found to inhibit specifically botrocetin-induced platelet aggregation and to bind both botrocetin and GPIb alpha. However, in contrast to the native A1 domain, VWF TASP did not bind simultaneously to both ligands. Modeling studies revealed that the relative orientation of the alpha helices in VWF TASP led to a clash of bound botrocetin and GPIb alpha. These results demonstrate that a chimeric four-helix-bundle TASP as a scaffold offers a suitable surface for presenting crucial residues of the VWF A1 domain; the potential of the TASP approach for de novo protein design and mimicry is thereby illustrated.
Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif.
Resumo:
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.
Resumo:
The epithelial sodium channel (ENaC) is responsible for Na+ and fluid absorption across colon, kidney, and airway epithelia. We have previously identified SPLUNC1 as an autocrine inhibitor of ENaC. We have now located the ENaC inhibitory domain of SPLUNC1 to SPLUNC1's N terminus, and a peptide corresponding to this domain, G22-A39, inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold). However, G22-A39 had no effect on the structurally related acid-sensing ion channels, indicating specificity for ENaC. G22-A39 preferentially bound to the β-ENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Addition of G22-A39 to CF human bronchial epithelial cultures (HBECs) resulted in an increase in airway surface liquid height from 4.2±0.6 to 7.9±0.6 μm, comparable to heights seen in normal HBECs, even in the presence of neutrophil elastase. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, which suggests that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the G22-A39 peptide suggests that this peptide may be suitable for treating CF lung disease.
Resumo:
We investigated the immunogenicity and the conformational properties of the non-repetitive sequences of the Plasmodium falciparum circumsporozoite (CS) protein. Two polypeptides of 104 and 102 amino acids long, covering, respectively, the N- and C-terminal regions of the CS protein, were synthesized using solid phase Fmoc chemistry. The crude polypeptides were purified by a combination of size exclusion chromatography and RP-HPLC. Sera of mice immunized with the free polypeptides emulsified in incomplete Freund's adjuvant strongly reacted with the synthetic polypeptides as well as with native CS protein as judged by ELISA and IFAT assays. Most importantly, these antisera inhibited the sporozoite invasion of hepatoma cells. In addition, sera derived from donors living in a malaria endemic area recognized the CS 104- and 102-mers. Conformational studies of the CS polypeptides were also performed by circular dichroism spectroscopy showing the presence of a weakly ordered structure that can be increased by addition of trifluoroethanol. The obtained results indicate that the synthetic CS polypeptides and the natural CS protein share some common antigenic determinants and probably have similar conformation. The approach used in this study might be useful for the development of a synthetic malaria vaccine.
Resumo:
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.
Resumo:
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Resumo:
This article presents a new theory that separates the levels of communication and relates them circularly, namely, by separating time from space/meaning variables. Documenting this proposition requires sequential microdescriptions--a far-out project in the field of family therapy. In an extensive study of clinical and nonclinical families, starting with available microanalytic data on nonverbal parent-infant dialogue, distinct time organizations have been found to modify the degree of circularity between the levels of interaction according to the observed types of engagement, that is, consensual, conflictual, and paradoxical. The double description of the dyad as a totality versus the dyad as a framing/developing organization imparts crucial information on how development proceeds in dyadic, co-evolutive systems, and presumably in larger ones too. In this perspective, a model is elaborated and then applied to a case description in our therapeutic consultation.
Resumo:
Binge drinking has nearly become the norm for young people and is thus worrying. Although alcohol use in males attracts more media attention, females are also frequently affected. A variety of preventive measures can be proposed: at the individual level by parents, peers and family doctors; at the school and community level, particularly to postpone age of first use and first episode of drunkenness; at the structural level through a policy restricting access to alcohol for young people and increasing its price. Family doctors can play an important role in identifying at risk users and individualising preventive messages to which these young people are exposed in other contexts.
Resumo:
OBJECTIVES: In this population-based study, reference values were generated for renal length, and the heritability and factors associated with kidney length were assessed. METHODS: Anthropometric parameters and renal ultrasound measurements were assessed in randomly selected nuclear families of European ancestry (Switzerland). The adjusted narrow sense heritability of kidney size parameters was estimated by maximum likelihood assuming multivariate normality after power transformation. Gender-specific reference centiles were generated for renal length according to body height in the subset of non-diabetic non-obese participants with normal renal function. RESULTS: We included 374 men and 419 women (mean ± SD, age 47 ± 18 and 48 ± 17 years, BMI 26.2 ± 4 and 24.5 ± 5 kg/m(2), respectively) from 205 families. Renal length was 11.4 ± 0.8 cm in men and 10.7 ± 0.8 cm in women; there was no difference between right and left renal length. Body height, weight and estimated glomerular filtration rate (eGFR) were positively associated with renal length, kidney function negatively, age quadratically, whereas gender and hypertension were not. The adjusted heritability estimates of renal length and volume were 47.3 ± 8.5 % and 45.5 ± 8.8 %, respectively (P < 0.001). CONCLUSION: The significant heritability of renal length and volume highlights the familial aggregation of this trait, independently of age and body size. Population-based references for renal length provide a useful guide for clinicians. KEY POINTS: • Renal length and volume are heritable traits, independent of age and size. • Based on a European population, gender-specific reference values/percentiles are provided for renal length. • Renal length correlates positively with body length and weight. • There was no difference between right and left renal lengths in this study. • This negates general teaching that the left kidney is larger and longer.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.
Resumo:
Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition.