158 resultados para Rich Skeletal-muscles
Resumo:
Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.
Resumo:
Rat hindlimb muscles constitutively express the inducible heat shock protein 72 (Hsp70), apparently in proportion to the slow myosin content. Since it remains controversial whether chronic Hsp70 expression reflects the overimposed stress, we investigated Hsp70 cellular distribution in fast muscles of the posterior rat hindlimb after (1) mild exercise training (up to 30 m/min treadmill run for 1 h/day), which induces a remodeling in fast fiber composition, or (2) prolonged exposure to normobaric hypoxia (10%O(2)), which does not affect fiber-type composition. Both conditions increased significantly protein Hsp70 levels in the skeletal muscle. Immunohistochemistry showed the labeling for Hsp70 in subsets of both slow/type 1 and fast/type 2A myofibers of control, sedentary, and normoxic rats. Endurance training increased about threefold the percentage of Hsp70-positive myofibers (P < 0.001), and changed the distribution of Hsp70 immunoreactivity, which involved a larger subset of both type 2A and intermediate type 2A/2X myofibers (P < 0.001) and vascular smooth muscle cells. Hypoxia induced Hsp70 immunoreactivity in smooth muscle cells of veins and did not increase the percentage of Hsp70-positive myofibers; however, sustained exposure to hypoxia affected the distribution of Hsp70 immunoreactivity, which appeared detectable in a very small subset of type 2A fibers, whereas it concentrated in type 1 myofibers (P < 0.05) together with the labeling for heme-oxygenase isoform 1, a marker of oxidative stress. Therefore, the chronic induction of Hsp70 expression in rat skeletal muscles is not obligatory related to the slow fiber phenotype but reveals the occurrence of a stress response.
Resumo:
Résumé tout public : Le développement du diabète de type II et de l'obésité est causé par l'interaction entre des gènes de susceptibilité et des facteurs environnementaux, en particulier une alimentation riche en calories et une activité physique insuffisante. Afín d'évaluer le rôle de l'alimentation en absence d'hétérogénéité génétique, nous avons nourri une lignée de souris génétiquement pure avec un régime extrêmement gras. Ce régime a conduit à l'établissement de différents phénotypes parmi ces souris, soit : un diabète et une obésité (ObD), un diabète mais pas d'obésité (LD) ou ni un diabète, ni une obésité (LnD). Nous avons fait l'hypothèse que ces adaptations différentes au stress nutritionnel induit par le régime gras étaient dues à l'établissement de programmes génétiques différents dans les principaux organes impliqués dans le maintien de l'équilibre énergétique. Afin d'évaluer cette hypothèse, nous avons développé une puce à ADN contenant approximativement 700 gènes du métabolisme. Cette puce à ADN, en rendant possible la mesure simultanée de l'expression de nombreux gènes, nous a permis d'établir les profils d'expression des gènes caractéristiques de chaque groupe de souris nourries avec le régime gras, dans le foie et le muscle squelettique. Les données que nous avons obtenues à partir de ces profils d'expression ont montré que des changements d'expression marqués se produisaient dans le foie et le muscle entre les différents groupes de souris nourries avec le régime gras. Dans l'ensemble, ces changements suggèrent que l'établissement du diabète de type II et de l'obésité induits par un régime gras est associé à une synthèse accrue de lipides par le foie et à un flux augmenté de lipides du foie jusqu'à la périphérie (muscles squelettiques). Dans un deuxième temps, ces profils d'expression des gènes ont été utilisés pour sélectionner un sous-ensemble de gènes suffisamment discriminants pour pouvoir distinguer entre les différents phénotypes. Ce sous-ensemble de gènes nous a permis de construire un classificateur phénotypique capable de prédire avec une précision relativement élevée le phénotype des souris. Dans le futur, de tels « prédicteurs » basés sur l'expression des gènes pourraient servir d'outils pour le diagnostic de pathologies liées au métabolisme. Summary: Aetiology of obesity and type II diabetes is multifactorial, involving both genetic and environmental factors, such as calory-rich diets or lack of exercice. Genetically homogenous C57BL/6J mice fed a high fat diet (HFD) up to nine months develop differential adaptation, becoming either obese and diabetic (ObD) or remaining lean in the presence (LD) or absence (LnD) of diabetes development. Each phenotype is associated with diverse metabolic alterations, which may result from diverse molecular adaptations of key organs involved in the control of energy homeostasis. In this study, we evaluated if specific patterns of gene expression could be associated with each different phenotype of HFD mice in the liver and the skeletal muscles. To perform this, we constructed a metabolic cDNA microarray containing approximately 700 cDNA representing genes involved in the main metabolic pathways of energy homeostasis. Our data indicate that the development of diet-induced obesity and type II diabetes is linked to some defects in lipid metabolism, involving a preserved hepatic lipogenesis and increased levels of very low density lipoproteins (VLDL). In skeletal muscles, an increase in fatty acids uptake, as suggested by the increased expression of lipoprotein lipase, would contribute to the increased level of insulin resistance observed in the ObD mice. Conversely, both groups of lean mice showed a reduced expression in lipogenic genes, particularly stearoyl-CoA desaturase 1 (Scd-1), a gene linked to sensitivity to diet-induced obesity. Secondly, we identified a subset of genes from expression profiles that classified with relative accuracy the different groups of mice. Such classifiers may be used in the future as diagnostic tools of each metabolic state in each tissue. Résumé Développement d'une puce à ADN métabolique et application à l'étude d'un modèle murin d'obésité et de diabète de type II L'étiologie de l'obésité et du diabète de type II est multifactorielle, impliquant à la fois des facteurs génétiques et environnementaux, tels que des régimes riches en calories ou un manque d'exercice physique. Des souris génétiquement homogènes C57BL/6J nourries avec un régime extrêmement gras (HFD) pendant 9 mois développent une adaptation métabolique différentielle, soit en devenant obèses et diabétiques (ObD), soit en restant minces en présence (LD) ou en absence (LnD) d'un diabète. Chaque phénotype est associé à diverses altérations métaboliques, qui pourraient résulter de diverses adaptations moléculaires des organes impliqués dans le contrôle de l'homéostasie énergétique. Dans cette étude, nous avons évalué si des profils d'expression des gènes dans le foie et le muscle squelettique pouvaient être associés à chacun des phénotypes de souris HFD. Dans ce but, nous avons développé une puce à ADN métabolique contenant approximativement 700 ADNc représentant des gènes impliqués dans les différentes voies métaboliques de l'homéostasie énergétique. Nos données indiquent que le développement de l'obésité et du diabète de type II induit par un régime gras est associé à certains défauts du métabolisme lipidique, impliquant une lipogenèse hépatique préservée et des niveaux de lipoprotéines de très faible densité (VLDL) augmentés. Au niveau du muscle squelettique, une augmentation du captage des acides gras, suggéré par l'expression augmentée de la lipoprotéine lipase, contribuerait à expliquer la résistance à l'insuline plus marquée observée chez les souris ObD. Au contraire, les souris minces ont montré une réduction marquée de l'expression des gènes lipogéniques, en particulier de la stéaroyl-CoA désaturase 1 (scd-1), un gène associé à la sensibilité au développement de l'obésité par un régime gras. Dans un deuxième temps, nous avons identifié un sous-ensemble de gènes à partir des profils d'expression, qui permettent de classifier avec une précision relativement élevée les différents groupes de souris. De tels classificateurs pourraient être utilisés dans le futur comme outils pour le diagnostic de l'état métabolique d'un tissu donné.
Resumo:
Skeletal muscle is considered to be a major site of energy expenditure and thus is important in regulating events affecting metabolic disorders. Over the years, both in vitro and in vivo approaches have established the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in fatty acid metabolism and energy expenditure in skeletal muscles. Pharmacological activation of PPARβ/δ by specific ligands regulates the expression of genes involved in lipid use, triglyceride hydrolysis, fatty acid oxidation, energy expenditure, and lipid efflux in muscles, in turn resulting in decreased body fat mass and enhanced insulin sensitivity. Both the lipid-lowering and the anti-diabetic effects exerted by the induction of PPARβ/δ result in the amelioration of symptoms of metabolic disorders. This review summarizes the action of PPARβ/δ activation in energy metabolism in skeletal muscles and also highlights the unexplored pathways in which it might have potential effects in the context of muscular disorders. Numerous preclinical studies have identified PPARβ/δ as a probable potential target for therapeutic interventions. Although PPARβ/δ agonists have not yet reached the market, several are presently being investigated in clinical trials.
Resumo:
Les ß2-agonistes sont des bronchodilatateurs qui sont prescrits pour traiter l'asthme et l'asthme induite par l'exercice (AIE). Il est relevant de comprendre s'il y a une utilisation adéquate de ces médicaments pour traiter l'AIE chez les athlètes de haut niveau, ou s'ils sont utilisés pour leur potentiel effet ergogénique sur la performance physique. Ce travail examine les actions centrales et périphériques sur la fonction contractile du muscle squelettique humain in vivo induits par l'ingestion d'une dose thérapeutique de ß2- agonistes. Le premier but était d'évaluer si les ß2-agonistes exerçaient une potentialisation de la contractilité du muscle humain et/ou un effet "anti¬fatigue" comme observé dans le modèle animal. Les résultats n'ont fournit aucune évidence d'une potentialisation sur le muscle squelettique humain in vivo non-fatigué et fatigué induit par l'administration orale de ß2-agonistes. Tout effet excitateur exercé par ce traitement sur le système nerveux central a été aussi exclu. Le deuxième but était de déterminer si les ß2-agonistes affaiblissaient la contractilité du muscle squelettique humain à contraction lente, et d'évaluer si ce changement pouvait interférer avec le contrôle moteur au muscle. Les résultats ont montré que les ß2-agonistes affaiblissent la contractilité des fibres lentes, comme conséquence de l'effet lusitrope positif se produisant dans ces fibres. La capacité de développer une force maximale n'est pas réduite par le traitement, même si une augmentation de la commande centrale au muscle est requise pour produire la même force lors de contractions sous-maximales. Le but final était d'examiner si une adaptation du contrôle moteur était re¬quis pour compenser l'affaiblissement des fibres lentes exercée par les ß2- agonistes pendant un exercice volontaire, et de déterminer si cette adaptation centrale pouvait accroître la fatigue musculaire. Malgré le fait que les résultats confirment l'effet affaiblissant induit par les ß2-agonistes, ce changement contractile n'influence pas le contrôle moteur au muscle pendant les contractions sous-maximales de l'exercice fatiguant, et n'accroît pas le degré de fatigue. Ce travail éclaircit les actions spécifiques des ß2-agonistes sur la fonction contractile du muscle squelettique humain in vivo et leurs influence sur le contrôle moteur. Les mécanismes sous-jacents de l'action ergogénique sur la performance physique produit par les ß2-agonistes sont aussi élucidés. -- ß2-Agonists are bronchodilators that are widely prescribed for the treatment of asthma and exercise-induced asthma (EIA). The extensive use of ß2-agonists by competitive athletes has raised the question as to whether there is a valid need for this class of drugs because of EIA or a misuse because of their potential ergogenic effect on exercise performance. This work investigated the central and peripheral actions that were elicited by the ingestion of a therapeutic dose of ß2-agonists on the contractility of human skeletal muscle in vivo. The first objective was to investigate whether ß2-agonists would potentiate muscle contractility and/or exert the "anti-fatigue" effect observed in animal models. The findings did not provide any evidence for the ß2-agonist-induced potentiation of in vivo human non-fatigued and fatigued skeletal muscle. Moreover, the findings exclude any excitatory action of this treatment on the central nervous system. The second objective was to explore whether the weakening action on the contractile function would occur after ß2-agonist intake in human slow-twitch skeletal muscle and to ascertain whether this contractile change may interfere with muscle motor control. The results showed that ß2-agonists weaken the contractility of slow-twitch muscle fibres as a result of the lusitropic effect occurring in these fibres. The maximal force-generating capacity of the skeletal muscle is not reduced by ß2-agonists, even though an augmented neural drive to muscle is required to develop the same force during submaximal contractions. The final objective was to examine whether a motor control adjustment is needed to compensate for the ß2-agonist-induced weakening effect on slow- twitch fibres during a voluntary exercise and to also assess whether this central adaptation could exaggerate muscle fatigue. Despite the findings confirming the occurrence of the weakening action that is exerted by ß2- agonists, this contractile change did not interfere with muscle motor control during the submaximal contractions of the fatiguing exercise and did not augment the degree of the muscle fatigue. This work contributes to a better understanding of the specific actions of ß2-agonists on the contractile function of in vivo human skeletal muscles and their influence on motor control. In addition, the findings elucidate mechanisms that could underlie the ergogenic effect that is exerted by ß2- agonists on physical performance.
Resumo:
A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.
Resumo:
Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.
Resumo:
Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.
Resumo:
The net mechanical efficiency of positive work (eta(pos)) has been shown to increase if it is immediately preceded by negative work. This phenomenon is explained by the storage of elastic energy during the negative phase and its release during the subsequent positive phase. If a transition time (T) takes place, the elastic energy is dissipated into heat. The aim of the present study was to investigate the relationship between eta(pos) and T, and to determine the minimal T required so that eta(pos) reached its minimal value. Seven healthy male subjects were tested during four series of lowering-raising of the body mass. In the first series (S (0)), the negative and positive phases were executed without any transition time. In the three other series, T was varied by a timer (0.12, 0.24 and 0.56 s for series S (1), S (2) and S (3), respectively). These exercises were performed on a force platform sensitive to vertical forces to measure the mechanical work and a gas analyser was used to determine the energy expenditure. The results indicated that eta(pos) was the highest (31.1%) for the series without any transition time (S (0)). The efficiencies observed with transition times (S (1), S (2) and S (3)) were 27.7, 26.0 and 23.8%, respectively, demonstrating that T plays an important role for mechanical efficiency. The investigation of the relationship between eta(pos) and T revealed that the minimal T required so that eta(pos) reached its minimal value is 0.59 s.
Resumo:
OBJECTIVE: Juvenile dermatomyositis (DM) is a systemic autoimmune disorder of unknown immunopathogenesis in which the immune system targets the microvasculature of skeletal muscles, skin, and other organs. The current mainstay of therapy is a steroid regimen in combination with other immunosuppressive treatments. To date, no validated markers for monitoring disease activity have been identified, which hampers personalized treatment. This study was undertaken to identify a panel of proteins specifically related to active disease in juvenile DM. METHODS: We performed a multiplex immunoassay for plasma levels of 45 proteins related to inflammation in 25 patients with juvenile DM in 4 clinically well-defined groups, as determined by clinical activity and treatment. We compared them to 14 age-matched healthy children and 8 age-matched children with nonautoimmune muscle disease. RESULTS: Cluster analysis of circulating proteins showed distinct profiles for juvenile DM patients and controls based on a group of 10 proteins. In addition to CXCL10, tumor necrosis factor receptor type II (TNFRII) and galectin 9 were significantly increased in active juvenile DM. The levels of these 3 proteins were tightly linked to active disease and correlated with clinical scores (as measured by the Childhood Myositis Assessment Scale and physician's global assessment of disease activity on a visual analog scale). CONCLUSION: Our findings indicate that CXCL10, TNFRII, and galectin 9 correspond to disease status in juvenile DM and thus could be helpful in monitoring disease activity and guiding treatment. Furthermore, they might provide new knowledge about the pathogenesis of this autoimmune disease.
Resumo:
The measurement of fat balance (fat input minus fat output) involves the accurate estimation of both metabolizable fat intake and total fat oxidation. This is possible mostly under laboratory conditions and not yet in free-living conditions. In the latter situation, net fat retention/mobilization can be estimated based on precise and accurate sequential body composition measurements. In case of positive balance, lipids stored in adipose tissue can originate from dietary (exogenous) lipids or from nonlipid precursors, mainly from carbohydrates (CHOs) but also from ethanol, through a process known as de novo lipogenesis (DNL). Basic equations are provided in this review to facilitate the interpretation of the different subcomponents of fat balance (endogenous vs exogenous) under different nutritional circumstances. One difficulty is methodological: total DNL is difficult to measure quantitatively in man; for example, indirect calorimetry only tracks net DNL, not total DNL. Although the numerous factors (mostly exogenous) influencing DNL have been studied, in particular the effect of CHO overfeeding, there is little information on the rate of DNL in habitual conditions of life, that is, large day-to-day fluctuations of CHO intakes, different types of CHO ingested with different glycemic indexes, alcohol combined with excess CHO intakes, etc. Three issues, which are still controversial today, will be addressed: (1) Is the increase of fat mass induced by CHO overfeeding explained by DNL only, or by decreased endogenous fat oxidation, or both? (2) Is DNL different in overweight and obese individuals as compared to their lean counterparts? (3) Does DNL occur both in the liver and in adipose tissue? Recent studies have demonstrated that acute CHO overfeeding influences adipose tissue lipogenic gene expression and that CHO may stimulate DNL in skeletal muscles, at least in vitro. The role of DNL and its importance in health and disease remain to be further clarified, in particular the putative effect of DNL on the control of energy intake and energy expenditure, as well as the occurrence of DNL in other tissues (such as in myocytes) in addition to hepatocytes and adipocytes.
Resumo:
Abstract :The contraction of the heart or skeletal muscles is mainly due to the propagation, through excitable cells, of an electrical influx called action potential (AP). The AP results from the sequential opening of ion channels that generate inward or outward currents through the cell membrane. Among all the channels involved, the voltage-gated sodium channel is responsible for the rising phase of the action potential. Ten genes encode the different isoforms of these channels (from Nav1.1 to Nav1.9 and an atypical channel named NavX). Nav1.4 and Nav1.5 are the main skeletal muscle and cardiac sodium channels respectively. Their importance for muscle and heart function has been highlighted by the description of mutations in their encoding genes SCN4A and SCNSA. They lead respectively to neuromuscular disorders such as myotonia or paralysis (for Nav1.4), and to cardiac arrhythmias that can deteriorate into sudden cardiac death (for Nav1.5).The general aim of my PhD work has been to study diseases linked with channels dysfunction, also called channelopathies. In that purpose, I investigated the function and the regulation of the muscle and cardiac voltage-gated sodium channels. During the two first studies, I characterized the effects of two mutations affecting Nav1.4 and Nav1.5 function. I used the HEK293 model cells to express wild-type or mutant channels and then studied their biophysical properties with the patch-clamp technique, in whole cell configuration. We found that the SCN4A mutation produced complex alterations of the muscle sodium channel function, that could explain the myotonic phenotype described in patients carrying the mutation. In the second study, the index case was an heterozygous carrier of a SCNSA mutation that leads to a "loss of function" of the channel. The decreased sodium current measured with mutated Nay 1.5 channels, at physiological temperature, was a one of the factors that could explain the observed Brugada syndrome. The last project aimed at identifying a new potential protein interacting with the cardiac sodium channel. We found that the protein SAP97 binds the three last amino-acids of the C-terminus of Na,, 1.5. Our results also indicated that silencing the expression of SAP97 in HEK293 cells decreased the sodium current. Sodium channels lacking their three last residues also produced a reduced INa. These preliminary results suggest that SAP97 is implicated in the regulation of sodium channel. Whether this effect is direct or imply the action of an adaptor protein remains to be investigated. Moreover, our group has previously shown that Nav1.5 channels are localized to lateral membranes of cardiomyocytes by the dystrophin multiprotein complex (DMC). This suggests that sodium channels are distributed in, at least, two different pools: one targeted at lateral membranes by DMC and the other at intercalated discs by another protein such as SAP97.These studies reveal that cardiac and muscle diseases may result from ion channel mutations but also from regulatory proteins affecting their regulation.Résumé :La contraction des muscles et du coeur est principalement due à la propagation, à travers les cellules excitables, d'un stimulus électrique appelé potentiel d'action (PA). C'est l'ouverture séquentielle de plusieurs canaux ioniques transmembranaires, permettant l'entrée ou la sortie d'ions dans la cellule, qui est à l'origine de ce PA. Parmi tous les canaux ioniques impliqués dans ce processus, les canaux sodiques dépendant du voltage sont responsables de la première phase du potentiel d'action. Les différentes isoformes de ces canaux (de Nav1.1 à Nav1.9 et NavX) sont codées par dix gènes distincts. Nav1.4 et Nav1.5 sont les principaux variants exprimés respectivement dans le muscle et le coeur. Plusieurs mutations ont été décrites dans les gènes qui codent pour ces deux canaux: SCN4A (pour Nav1.4) et SCNSA (pour Nav1.5). Elles sont impliquées dans des pathologies neuromusculaires telles que des paralysies ou myotonies (SCN4A) ou des arythmies cardiaques pouvant conduire à la mort subite cardiaque (SCNSA).Mon travail de thèse a consisté à étudier les maladies liées aux dysfonctionnements de ces canaux, aussi appelées canalopathies. J'ai ainsi analysé la fonction et la régulation des canaux sodiques dépendant du voltage dans le muscle squelettique et le coeur. A travers les deux premières études, j'ai ainsi pu examiner les conséquences de deux mutations affectant respectivement les canaux Nav1.4 et Nav1.5. Les canaux sauvages ou mutants ont été exprimés dans des cellules HEK293 afin de caractériser leurs propriétés biophysiques par la technique du patch clamp en configuration cellule entière. Nous avons pu déterminer que la mutation trouvée dans le gène SCN4A engendrait des modifications importantes de la fonction du canal musculaire. Ces altérations fournissent des indications nous permettant d'expliquer certains aspects de la myotonie observée chez les membres de la famille étudiée. Le patient présenté dans la deuxième étude était hétérozygote pour la mutation identifiée dans le gène SCNSA. La perte de fonction des canaux Nav1.5 ainsi engendrée, a été observée lors d'analyses à températures physiologiques. Elle représente l'un des éléments pouvant potentiellement expliquer le syndrome de Brugada du patient. La dernière étude a consisté à identifier une nouvelle protéine impliquée dans la régulation du canal sodique cardiaque. Nos expériences ont démontré que les trois derniers acides aminés de la partie C-terminale de Nav1.5 pouvaient interagir avec la protéine SAP97. Lorsque que l'expression de la SAP97 est réduite dans les cellules HEK293, cela induit une baisse importante du courant sodique. De même, les canaux tronqués de leurs trois derniers acides aminés génèrent un flux ionique réduit. Ces résultats préliminaires suggèrent que SAP97 est peut-être impliquée dans la régulation du canal Na,,1.5. Des expériences complémentaires permettront de déterminer si ces deux protéines interagissent directement ou si une protéine adaptatrice est nécessaire. De plus, nous avons préalablement montré que les canaux Nav1.5 étaient localisés au niveau de la membrane latérale des cardiomyocytes par le complexe multiprotéique de la dystrophine (DMC). Ceci suggère que les canaux sodiques peuvent être distribués dans un minimum de deux pools, l'un ciblé aux membranes latérales pax le DMC et l'autre dirigé vers les disques intercalaires par des protéines telles que SAP97.L'ensemble de ces études met en évidence que certaines maladies musculaires et cardiaques peuvent être la conséquence directe de mutations de canaux ioniques, mais que l'action de protéines auxiliaires peut aussi affecter leur fonction.
Resumo:
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.
Resumo:
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.
Resumo:
Calbindin D-28k is a calcium-binding protein which is not expressed by dorsal root ganglion cells cultured from 6-day-old (E6) chick embryos. When soluble muscle extracts from embryos at E11, E18 or chickens 2 weeks after hatching were added immediately after seeding, dorsal root ganglia cells grown at E6 displayed neuronal subpopulations expressing calbindin immunoreactivity with time; the effect of muscle extract on the percentage of calbindin-immunoreactive dorsal root ganglia cells followed a dose-response curve. When muscle extract was added to cultures after a 3 day delay, the percentage of calbindin-expressing neurons was unchanged. The effect produced by muscle extract and, to a lesser degree, skin extract on the appearance of calbindin-positive neurons was not reproduced by brain or liver extracts while all four exerted a trophic action on cultured neurons. Hence it is assumed that muscle extract contains a factor which produces an inductive effect on the initiation of calbindin-expression by uncommitted subpopulations of sensory neurons rather than a trophic influence on the selective survival of covertly committed neuronal subpopulations. The fact that muscle extract promoted calbindin expression by dorsal root ganglia cells in neuron-enriched as well as in mixed dorsal root ganglion cell cultures indicates that the factor would act directly on sensory neurons rather than indirectly through mediation of non-neuronal cells. Since the active muscular factor was non-dialysable, heat-inactivated, trypsin-sensitive and retained by molecular filters with a cut-off of 30 K, this factor is probably a protein.