137 resultados para Modeling.
Ab initio modeling and molecular dynamics simulation of the alpha 1b-adrenergic receptor activation.
Resumo:
This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
Odds ratios for head and neck cancer increase with greater cigarette and alcohol use and lower body mass index (BMI; weight (kg)/height(2) (m(2))). Using data from the International Head and Neck Cancer Epidemiology Consortium, the authors conducted a formal analysis of BMI as a modifier of smoking- and alcohol-related effects. Analysis of never and current smokers included 6,333 cases, while analysis of never drinkers and consumers of < or =10 drinks/day included 8,452 cases. There were 8,000 or more controls, depending on the analysis. Odds ratios for all sites increased with lower BMI, greater smoking, and greater drinking. In polytomous regression, odds ratios for BMI (P = 0.65), smoking (P = 0.52), and drinking (P = 0.73) were homogeneous for oral cavity and pharyngeal cancers. Odds ratios for BMI and drinking were greater for oral cavity/pharyngeal cancer (P < 0.01), while smoking odds ratios were greater for laryngeal cancer (P < 0.01). Lower BMI enhanced smoking- and drinking-related odds ratios for oral cavity/pharyngeal cancer (P < 0.01), while BMI did not modify smoking and drinking odds ratios for laryngeal cancer. The increased odds ratios for all sites with low BMI may suggest related carcinogenic mechanisms; however, BMI modification of smoking and drinking odds ratios for cancer of the oral cavity/pharynx but not larynx cancer suggests additional factors specific to oral cavity/pharynx cancer.
Resumo:
In recent years, multi-atlas fusion methods have gainedsignificant attention in medical image segmentation. Inthis paper, we propose a general Markov Random Field(MRF) based framework that can perform edge-preservingsmoothing of the labels at the time of fusing the labelsitself. More specifically, we formulate the label fusionproblem with MRF-based neighborhood priors, as an energyminimization problem containing a unary data term and apairwise smoothness term. We present how the existingfusion methods like majority voting, global weightedvoting and local weighted voting methods can be reframedto profit from the proposed framework, for generatingmore accurate segmentations as well as more contiguoussegmentations by getting rid of holes and islands. Theproposed framework is evaluated for segmenting lymphnodes in 3D head and neck CT images. A comparison ofvarious fusion algorithms is also presented.
Resumo:
PECUBE is a three-dimensional thermal-kinematic code capable of solving the heat production-diffusion-advection equation under a temporally varying surface boundary condition. It was initially developed to assess the effects of time-varying surface topography (relief) on low-temperature thermochronological datasets. Thermochronometric ages are predicted by tracking the time-temperature histories of rock-particles ending up at the surface and by combining these with various age-prediction models. In the decade since its inception, the PECUBE code has been under continuous development as its use became wider and addressed different tectonic-geomorphic problems. This paper describes several major recent improvements in the code, including its integration with an inverse-modeling package based on the Neighborhood Algorithm, the incorporation of fault-controlled kinematics, several different ways to address topographic and drainage change through time, the ability to predict subsurface (tunnel or borehole) data, prediction of detrital thermochronology data and a method to compare these with observations, and the coupling with landscape-evolution (or surface-process) models. Each new development is described together with one or several applications, so that the reader and potential user can clearly assess and make use of the capabilities of PECUBE. We end with describing some developments that are currently underway or should take place in the foreseeable future. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Resumo:
1. Species distribution modelling is used increasingly in both applied and theoretical research to predict how species are distributed and to understand attributes of species' environmental requirements. In species distribution modelling, various statistical methods are used that combine species occurrence data with environmental spatial data layers to predict the suitability of any site for that species. While the number of data sharing initiatives involving species' occurrences in the scientific community has increased dramatically over the past few years, various data quality and methodological concerns related to using these data for species distribution modelling have not been addressed adequately. 2. We evaluated how uncertainty in georeferences and associated locational error in occurrences influence species distribution modelling using two treatments: (1) a control treatment where models were calibrated with original, accurate data and (2) an error treatment where data were first degraded spatially to simulate locational error. To incorporate error into the coordinates, we moved each coordinate with a random number drawn from the normal distribution with a mean of zero and a standard deviation of 5 km. We evaluated the influence of error on the performance of 10 commonly used distributional modelling techniques applied to 40 species in four distinct geographical regions. 3. Locational error in occurrences reduced model performance in three of these regions; relatively accurate predictions of species distributions were possible for most species, even with degraded occurrences. Two species distribution modelling techniques, boosted regression trees and maximum entropy, were the best performing models in the face of locational errors. The results obtained with boosted regression trees were only slightly degraded by errors in location, and the results obtained with the maximum entropy approach were not affected by such errors. 4. Synthesis and applications. To use the vast array of occurrence data that exists currently for research and management relating to the geographical ranges of species, modellers need to know the influence of locational error on model quality and whether some modelling techniques are particularly robust to error. We show that certain modelling techniques are particularly robust to a moderate level of locational error and that useful predictions of species distributions can be made even when occurrence data include some error.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Multimodel inference and multimodel averaging in empirical modeling of occupational exposure levels.
Resumo:
Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.